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Abstract

_ - Daniel M. Fichana
Green Engineering and Gate-to Gate Life Cycle Assessments for Pharmaceutical
Products
2004/2005
Dr. C. Stewart Slater
Chemical Engineering

The research of this thesis focused on the environmental and processing metrics
during the development of two different drugs. Previous research in life cycle
assessments and green engineering have focused on other products and processes, but
only.a limited amount of studies have been conducted for pharmaceutical applications.
This analysis concerned a gate-to-gate analysis of two distinct pharmaceutical products
along with the development of a solvent selection table. The goal of this research was to
determine how various processing and environmental metrics were affected by process
improvements.

The first drug was the pravastétin, which was made via a fermentation route.
Four lab scale routes were investigated for this drug. The second study tracked the
processing and environmental metrics of another drug through three different scales; lab-
scale, glass-scale, and pilot-scale. A solvent selection table was also developed as part of
the research for this project and included in this paper.

Some of the conclusions for this analysis were that over time the processing
metrics and the environmental metrics decreased for different reasons. The factors that
contributed to a decrease in environmental ‘factors were increased yield, solvent

substitution and the removal of process equipment.
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Chapter 1: Introduction and Background

Introduction

Green engineering is a relatively new concept that is partially based lean product
methods. Green engineering is a term used to describe engineeriﬁg, which attempts to
minimize the pollution at the source while also minimizing the risk to human__heélth and
the environment. There is also an economic aspect to green engineering,. Thé design and
use of products and processes have to be economically feasible [1].

One principle of green engineering is applying life cycle assessment to products
and processes. Life cycle assessment is a methodology of analyzing the various mass and
energy balances in and out of the process. A list of environmental factors are then
| applied to these masses and emissions from ihe energy. This typically consists of 4 steps
[2]. These steps include the goal and scope step, the inventory step, the impact step, and
the interpretation step. Once the a life cycle assessment study has been conducted,
prdblern areas can be identified and green engineering solutions can be applied and
alternatives can be found to make the process more sustainable. |

A life cycle assessment on a process is usually conducted in the research and
development to determine if there are other options such as replacement of a solvent or
chemical with a less environmentally harmful ones, comparison of the process to
processes used by competitors, and also to reduce liability {3], [4].

There were two studies consideréd for the green engineering analysis described in
~ this thesis. These took into account two important aspects during drug development.

These two important aspects are the analysis of a fermentation-based pharmaceutical



which compares improvements made by different people over a certain time period and
the scale up of another product. There has not been a study that focused solely on the
lab-scale of a fermentation-based i)roduct, which compares the drug made 20 years ago to
more recent process improvements in the manufacturing process. Another goal of this
study was to study a drug thrbughout the discoVery stages and process modifications by
the initial investigational team in the early 1980°s and improvements made by another
team more recently in 2004. This analysis was used to determine if any trends were
present.

Pravastatin was specifically chosen as the lab-scale drug because it is a drug that
is available as -a name-brand drug and the patent expires in 2006, which will result in
generic manufactures having a wide array of processes to make pravastatin.

A second study was also conducted on the scale up of another pharmaceutical
product. This will show how various environmental metrics can be used to show how
environmental impacts change as a pharmaceutical pr(')duc_t. goes through scale-up in the
process development stages. Between this study and the previous study, the full life-

cycle of a drug can be investigated and a full analysis can be conducted.
Background on Life Cycle Assessment | 5]

Life cycle aséessmer_xt is a way to determine the environmental impact of the
products or pfocesses by using the masses of materials and energy that are input into the
process and the outputs from the process. These studies are typically conducted on a
cradle to grave approach, but could be conducted as a gate-to gate approach depending on

the level of information available. A list of environmental metrics are applied to these



metrics to determine which process or product is more environmentally friendly or more

sustainable. A simple life cycle assessment (LCA) is shown in Figure 1. This is a

general life cycle assessment for the manufacture of salt and includes a cradle to gate

analysis. In a full there would be many more streams to account for all of the inputs and

outputs for the process.

energy

Salt Mine

energy

Forest

Cradle Manufacture

Figure 1: General LCA for Salt

salt

Use

Life cycle impact assessment methodology has been in foreground of

sustainability since the 1960’s. The early studies focused solely on energy usage and

solid waste while little consideration was paid to the various environmental risks

associated with these compounds. During the oil crisis in the 1970’s a large amount of

energy studies were conducted on various industries [3], [6]. These studies were the



basis of life cycle in\fentories. An example of a mass and energy balance can be seen by
Beaver et al. [7]. This study was a very simplified version of a life cycle assessment and
only included 4 criteria; mass, energy, water and greenhouse gas emissions [7]. There
was a pfactice called the “Best Practicable Environmental bption (BPEO)” which was
practiced during the late 1980°s and early 1990’s aod was practiced in Europe [6]. This
approach was not the best approach to use since it tried to minimize the environmental
burdens at the practitioner’s plant. BPEO did not analyze the entire life cycle. Life cycle
assessments came into fruition in the late 1980°s, but were preformed by private
companies [3]. Unfortunately these studies did not have a common framework. In 1993
the Society of Environmental Toxicology and Chemistry introduced principles on how to
conduct, reviow, use and present the findings of a life cycle assessment [3]. The
International Standardization Organization introduced an internal standard concerning
life cycle assessments in 1997. This standard is known as ISO 14000 and outlined the
various procedures for conducting a life cycle analysis.

Life cycle assessment is a process of analyzing various environmental criteria of a
certain product or process to minimize waste and environmental impact. Life cycle
impact assessments typically consist of 4 steps [8]. The first step includes the definitions
of the system boundary, scope, and the functional unit. The second step consists of an
inventory of the ioputs and outputs of the system. Many life cycle assessments are
brought to an end at this stage and conclusioos are based on how to minimize mass and
energy usage [3]. Unfortunately, this approach of making recommendations based solely
on the life cycle inven‘_nofy does not consider “whether some categories in the iinventory

analysis are more hazardous than others™ [3]. The third step is comprised of transforming



the values obtained in step 2 into factors of environmental performance. The last step is
interpreting the results of step 3 and recommending process improvements if feasible [9].
SETAC has a different, but similar 4™ step, which is termed “improvement assessment”
which is a way to improve the impact assessment [6] .

Life cycle assessments are typically conducted for user products, but can also be
used proactively for process selection, design, and optimization [6]. Burgess,. et al. stated
that a life cycle assessment conducted on a product is also valid for the processing steps
involved in the manufacture of the product [3]. The purpose for conducting an LCA for
a process is different than an LCA conducted on a product [3]. Contrary to the previous
claim, Chevalier et al., stated that ’a life cycle conducted on a process is more thorough
than a life cycle conducted on a product [4]. A life cycle assessment on a process is
usually conducted in the research and development to determine if there are other options
such as réplacement of a solvent with a less environmentally harmful solvent, comparison
of the process to the processes used by competitors, and also to reduce liability [3], [4].
A product life cycle analysis is typical done for the purpose of marketing and policy

making [3]

Goal and Scope of a Life Cycle Assessment

Defining a boundary for a life cycle assessment is a difficult task. The
International Standards Organization 14040 standardized life cycle impact assessments in
1997 [10], [11]. This states that a life cycle aésessment should be conducted in terms of

elementary flows. This was typically understood as from the cradle to the grave, which

10



included raw material mining to the disposal of the product. This included all the supply
chains for a specific life cycle assessment [9]. The standard was further refined by ISO
14041. This stated that certain processes, inputs, and outp;uts can be omitted if these
processes are deemed insignificant [3]. Burgess, et al. stated that assumptions concerning
- the boundary conditions are necessary to maintain manageability and the law of
diminishing returns can be seen after three upstream processes. Unfortunately according
to 1SO standards, this data must be collected before it can be disregarded. The functional
unit is typically 1 ton of product for processes, but can be specified where product
effectiveness is an issue [3].

Suh et al. stated that the ISO standards for excluding and including processes in
system boundaries are difﬁcult to determine because the cutoff criteria typically do not
have a scientific basis [12].  Also excluding or including a process to extend the

boundaries can be difficult if the practitioner has no experience on the specific process.
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Methods for life cycle inventory

This portion of Ja life cycle analysis is the collection of all the data that will be
used in the life cycle analysis. The quality of the data is an ir;lponant part of the life cycle
inventory process. According to Burgess et al., the results of the life cycle assessment are
only as good as the input data. The data obtained in some life cycle analysis may be
controversial due to the source of the data. This is usually the case when the data is
proprietary or from a confidential source [3]

There are four main methods of conducting a life cycle impact inventory. These
methods are economy scale, life cycle scale, equipment scale, and a hybrid LCI [9].
There are advantages and disadvantages to each of these methods. The methods listed
are listed from the most general to the most detailed. The most general analysis contains
all the information frorﬁ cradle-to- grave, but is not specific for an individual process,
while the most detailed method is typically used for gate-to-gate analysis.

The first method ié the economy scale [9], [13]. This type of method typically
uses national statistics about resource use and emissions from a specified sector and
considers the whole economy. Typically this is an advantage in this process because the
boundary can be defined as cradle to grave. The most well known method in this
category is the EIOLCA software developed by Carnlegie Mellon [13]. There are two
disadvantages to this approach. Typically an assumption must be made concerning the
products. This assumption assumes there is a linear relationship between the dollars
spent on the product and its environmental impact. For some cases this may be true, such

as in the case of obtaining a higher purity for a chemical, but in other cases, it does not

12



hold true, such as cars [13]. The researchers to this method clearly state the limitations
and use a car for an example for the limitations. There is also another drawback to using
this type of method. The data typically used is that most of the data is collected from the
entire industry. This assumption may be valid assuming that the company is around the
average, but the given company may be a leader in sustainability or may be operating
inefficiently or may be using an out of date process.

The second method that is typically used is the life cycle scale [9]. This scale
typically focuses on a specific sector. These life cycle inventories are the typical
inventories used in industry. This type of data is more detailed then the data offered in
economic scale analysis, but does not include a large degree of details about the
individual processes, pieces of equipment, or other reactants/catalysts that could be
considered negligible. There is a small issue about boundary selection in this type of
inventory. The results of any life cycle analysis ére highly dependent on the boundary
selection of the system. For example, if a person was comparing two drugs which did the
same thing, but for one drug they conducted a gate-to-gate analysis and for the other drug
they conducted a cradle to gate, the analysis could led to a different conclusion. |

The third type of method for conducting a life cycle inventory is on the equipment
scale [9]. This method is not used often for a full life cycle assessment even though the
most accurate data can be obtained from this method. The issue with this method is the
amount of time, resources and access needed to conduct a full life cycle inventory. This
type of method is used for gate-to-gate analysis of various processes. Another issue with
this method of conducting an LCI is that a comparison is relatively difficult to obtain

since a gate-to-gate inventory does not account for how the given raw materials are being

13



produced. This type of method is usually supplemented with data from the previous 3
LCI methods.

The fourth type of method is the use of a hybrid life cycle inventory [9]. This
method combines the features of the economic, life cycle and. equipment scale. The
motivation behind this method was to try to overcome the shortcomings of the various
methods. The hybrid methods combined the economy scale with the life cycle scale to
give a cradle to grave analysis with more detailed information on the specific industry or
can be a combination of life cycle scale analysis combined with equipment scale analysis
[12]. The advantage to this method is that it fills in tﬁe gaps that are left from the life
cycle scale with data from the economic scale, which 'enables the person conducting the
life cycle assessment to have a full cradle to gate life cycle. This type of life cycle also
has the limitations of the economic scale for the data that is taken from the economic
scale.

There are other methods that can be used for a life cycle inveqtory which include
a limited life cycle inventory [7]. This only considers a small amount of metrics such as
mass, water usage, energy, toxics emitted and overall- pollutants emitted. This uses in-
depth calculations, but does not consider all of the metrics stated by Allen and Shonnard
[8]. Another method for life cycle assessment was proposed by Lei et al. called “the
Most of the Most” [14]. This consisted of finding the most significant impact factors and
then selecting the most significant phases. This process was meant to consider the whole
process life cycle, but severely limits the size of an LCA.

Another way to conduct a life cycle assessment is in terms of exergy. Exergy is

the available energy for the specific process [15]. This method reduced the amount of
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double counting involved in a process [15]. According to Cornelisen et al., an exergetic
life cycle %%ssﬁent is a good tool to use in the area of depletion of natural resources and
stated that life cyclé assessments are weak in evaluating the depletion of natural resources
[16]. An exergetic analysis compares the irreversibility of the different products and
whichever product has the lower irreversibility is more sustainable [15], [16], [17].
Cornelisen et al. compared coal, green wood, and dried wood in an exergetic life cycle
assessmént. According to the study mentioned above using waste wood as chipboard
instead of as an energy source gives less depletion [16]. It was also found that using
green wood for electricity than for chipboard gives less depletion of resources than using
waste wood for electricity production mainly due to the factor that the green wood would
have to be dried prior to being used in chipboard production [16]. Ukidiwe et al., stated
that the exergetic life cycle assessment does not account for various ecological resources
and suggests that a thermodynamic life cycle assessment can be used in place of an
exergetic LCA [18].

If there ié limited information given on a specified process from the manufacturer,
there are a series of heuristics that can be used to determine various parameters that ére
not given [19]. Jimenez-Gonzalez et al., proposed a metilodology that can be used if the
information is not given or is unknown [20]. This includes the inlet temperature and
pressure, reflux ratio, fugitive losses and to account for any water in contact with other
chemicals as contaminated. Jimenez-Gonzalez et al., mentioned that by using this
approach will give a 20% error, but the error is smaller than not having any data for the

process [19].
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Impact assessment and analysis

There are many factors that could be considered in the impact assessment stage of
a life cycle analysis. There are 3 steps that are conducted. in an impact analysis which are
classification, characterization and valuation. The first step is classification. In this step
the compouﬁds are grouped according to impact categories. Xun et al., stated that there
are 4 classes of metrics that can be used in the impact portion of the life cycle assessment
[21]. The first of these categories is generic for both chemical and site. The second
category is chemical specific, but does not .account\ for environmental conditions. The
third class is chemical specific in a generic environment, such as a chemical’s global
effects. The fourth class is site and chemical specific, such as releases into a specific
waterway. Typical impact categories include global warming, ozone depletion, smog
formation, human carcinogenicity, atmospheric acidification, aquatic and terrestrial
toxicity, habitat destruction, eutrophication, and depletion of non-renewable resources
[3], [8], [22].

Characterization is th.e second step on an impact analysis. In the characterization
step, the mass or dollar amount of material is multiplied by the potential for the
compound to cause an impact on a specified criterion such as global warming. When two
similar products are compared and one product is higher for all impact éategories are, no
further analysis is needed, but this is rarely the case [8].

The valuation step consists of determining which impact categories are the most
significant from the characterization step. Also in the valuation step, the total amount of
ocean and land that are needed to “buffer” the various environmental impacts are

calculated [8]. It is also possible to conduct the valuation stage in terms of monetary
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value [3], [13]. Burgess, et al. stated that is difficult to develop a set standard for
assigning relative weights to the categories because there is no clear consensus on how to
carry out the stage of valuation [3]. Shonnard et al., developed a way to determine the
specific weighting of the category using the relevance of the category in a specific
country [22]. Shonnard et al., also showed how weighted factors can be used to
determine which factor contributes most using societal factors [22]. Shonnard et al., use
a process called Eco-Efficiency to determine which process causes the least

environmental impact at the lowest normalized cost.

Previous Studies in Life Cycle Assessment

Typical life cycle assessments are conducted in the product review stage during a
process [23]. During the product review, the plant, pfototypes, and detailed design of the
product have already been done.

Mueller et al. stated that life cycle evaluation is needeci at the planning stage of
product development [23]. Mueller et al. investigated the disposal of multifunctional
chip cards, which are used in a wide variety of electronics [23]. This article breaks down
the amount of material used for each board, how much is recycled, how much material is
incineratéd, the toxic emissions and the energy required to miné/produce the material.
This shows that the board is made of roughly half PVC, which accounts for 2/3 of the
toxic emissions, but only 8.1% of the total energy to produce. On the other side, the
silver oxide is only used in 2.5% of the product by weight, but takes the most energy to

produce.
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There have been studies conducted for electricity generation. One of these studies
focused on the use of natural gas, heavy oil, or coal for use in a co-generation plant [24].
This paper used a numerical eco-load total standardized evaluation system developed by
the authors to determine which type of fuel would be best to used in the co-generation
plant. This article found that coal, and not natural gas had the lowest eco-load. The
study by Goralczyk compared hydroelectric, photovoltaic cells, wind turbines, oil, coal,
and natural gas [25]. Goralczyk found that electricity from hydropower had the least
environmental impact [25]. Another study was conducted by Schieisner, which focused
on wind farms [26]. This study was a typical life cycle inventory study that focused on
the materials used to manufacture the windmills, but stoppe& short on the analysis
portion. In the study conducted by Schleisner, it was found that 2% of the electricity
generated during the windmill’s lifetime was used to manufacture the windmill
components [26].

A life cycle assessment for various forms of production for hydrogen has also
been conducted. Koroneos et al., cited 6 ways to manufacture hydrogen [27]. These are
photovoltaic cells, solar thermal energy, wind power, hydroelectric power, biomass .
degradation and natural gas steam reforming [27]. Generation of hydrogen from wind
has the least environmental impacts for greenhouse gas formation, acidification,
eutrophication and smog formation [27]. Hydrogen formation using }Shotovoltaic cells
has the largest total environmental impact {27]. The recommendation of Koroneos et al.;
is to use wind power, hydropower and solar thermal power to produce hydrogen since

these are the “most environmentally friendly methods™ {27].
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There was also a life cycle assessment on two different anodizing processes [28].
This consisted of six life cycle stages and two different ways to anodize metal. The two
processes were a mixture of boric and sulfuric acid and the other process used chromic
acid. This a;rticle used a series of matrices to determine the environment impacts of the
two processes. According to Eagan et al., the process using the mixture of boric and
sulfuric acid is a better choice over the process using chromic acid [28].

Tan et al., have conducted a life cycle assessment for an aluminum supply chain
[29]. This was a cradle to gate life cycle assessment of an aluminum billet, which
included the mining of bauxite, the processing of the alumina and the final casting
process for 3 plants located in Australia. Four different scenarios were analyzed, a base
case, a reduction in scrap metal, a reduction of scrap metal and a mére sustainable
practice for the smelter, and the latter with clean coal technology. Implementation of the
last case decreased the global warming potential by 21%, and also decreased the éll other
emissions [29].

A few life cycle assessments have been conducted on the pharmaceutical industry.
| One study conducted by Jodicke et al., focused on one processing aspect of an
intermediate with a metal catalyst or bio-catalyzed with yeast [30]. It was shown that the
solvents used in the extraction of the product played a large rlole in the environmental
impacts.

Life cycle assessments have also been conducted on desalination technologies.
One study was conducted by Raluy et al. and used SimaPro 5.0 software for the analysis
portion. There were 3 desalination technologies that were compared. These were multi-

effect distillation, multi-stage flash and reverse osmosis [31]. The study focused on the
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environmental criteria of carbon dioxide, nitrogen oxides, non-methane volatile organic
compounds, and sulfur oxides. The analysis of the paper published by Raluy et al.
focused on integrating the distillation process and flash process with a cogeneration plant
and with reverse osmosis. This study also compared different regions. These regions are
dependent on different types of fuels for electricity. It was found that in the average
European, Spanish, and Portuguese regions that a multi-stage flash had the least
environmental burdens, but in the French and Norwegian models, reverse osmosis had
the least environmental negative effects using Eco-indicator 99, Ecopoint 97 and CML 2
baseline [31]. Raluy et al. also stated that using a hybrid plant cuts aown energy usage
by 75% [31]. |

There are also a number of studies done on industrial paint coatings. One study
done by Shonnard et al., compared 5 different coating processes for-wooden doors [22].
From this analysis the UV coating process has tﬁe least risk potential, raw material
consumption, emissions and energy consumption [22]. Papasavva et al., also conducted
a life cycle assessment on paints which focused on paints used in the automotive industry
[32]. This study focused on 3 types of coating materials; primer, basecoat and clear coat.
Three primers were investigatéd, one solvent borne and 2 powders. One powder was
acrylic and the other powder was polyester. The 2 basecoats that were used were
waterborne which are white and pewter. The 2 clear coats Were both acrylic, but one was
a solvent clear coat while the other was a powder clear coat. The white basecoat was
chosen for the article since the energy required produced either basecoat “use about the
same amount of energy” [32]. The criteria used by Papasavva et al. were material

requirements, energy consumption, atmospheric emissions, water emissions, solid waste
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emissions, particulate matter, SOy, NOy, CO, VOC, and CO,. Papasavva et al. sh_ow that
there is a trade-off between environmental factors. This is evident from the combination
of the powder primer, water basecoat and powder clear coat “the PP2-WBI1-PC2 is
associated with the least energy, water consumption, solid wéste and VOC. However it
exceeds the other .scenarios in PM, SO,, and CO, equivalent air emissions[{32]. There
was another life cycle assessment cohducted on car painting. Dobson shows from the
analysis that incineration of the VOC compounds has the same environméntal impact as
the water based paint [33]. Dobson used the same criteria as Papasavva et al.[33].

The pulﬁ and paper industry is another industry where life cycle assessment
methodology has been applied. One example was a paper by Lopes et al., which
compared two types of fuels, heavy fuel and natural gas, which'were used in the pulp and
paper industry [34]. The environmental categories were the same categories listed by
Shonnard et al. [8]. The use of methane in place: of fuel oil decreased all of the
environmental parameters except photochemical ozone fofmation, which did not vary
between fuel options {34]. |

Other life cycle assessments have been conducted on recycling. One of these
studies by Rio et al., focused on the end of life recycling of plastics used in electronics
[35]. The focus of this paper was on the separation and sorting of various types of
plastics for recycling. Another study conducted by Shonnard et al., compared PET
bottles to- glass bottles with and without recycling. It was found that recycling the PET
bottles had the least environmental impact and the same normalized cost as the glass
bottle [35]. Song et al., focused on the recycling aspects of PET bottles for 11 different

scenarios and showed that as the collection ratio increases, the energy used for collection
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also increases [36]. Song et al., cited that the recycle pathway which produces the least
CO,, SO, and NOy was the closed loop and landfill pathway while the pathway which
produced the least solid waste was the pathway for pyrolysis and incineration [36]. There
was also s study for another commonly recycled product, which is paper. Ekva_ll_
conducted a life cycle analysis for recycling newsprint in Sweden [37]. Shiojiri et al.
conducted a life cycle assessment on recycling sulfur hexafluoride used in the electronics
industry. [38]. There were different ways to use and to recycle the sulfur hexafluoride.
From the study conducted on sulfur hexafluoride “energy consumption as well as global
warming risk can be reduced by using a mixture of SF¢ with nitrogen as an insulating gas
compared to SF¢”, but the other environmental impacts will increase due to transportation
to the recycling plant [38].

There have been life cycle assessments conducted on waste management.
Jimenez-Gonzalez et al., conducted a partial life cszcle inventory on 3 different waste
treatments for pharmaceutical waste [20]. These life cycle inventories were conducted on
wastewater treatment plant, an incinerator, and solvent recovery [20]. Chevalier et al.,
compared two flue gas treatment processes for waste incineration using life cycle
assessment [4].

Gasoline :;nd other fuels have also had life cycle assessments completed on their
manufacture and use. Major uses of these fuels are in vehicles, which is a concern of a
few of these studies. Furuholt conducted a study comparing gasoline and diesel [39].
This study focused on the production of diesel, gasoline,-arid gasoline with MTBE. This
study focused on the manufacture of 1.000 L of fuel in Norway. The factors that were

considered in this study were global warming, photo-oxidant formation, acidification,
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eutrophication, fossil energy and solid waste. The impacts in the environmental
categories listed above were also conducted on the basis of 1 MJ of energy. Both studies
found that gasoline with MTBE contributed the most to the categories lisied above. It
was also found that diesel fuel and gasoline have approximately the same scaled values
for acidification, eutrophication, and solid waste, but gasoline without additives has 1.5
times the global warming, 2.6 times the photo-chemical oxidant formation, and uses 1.5
times the fossil energy as diesel [39]. Another study on automobile fuel options was
conducted by MacLean et al. [40]. This study foc.used on light duty vehicles and the CO»
equivalent gases released during manufacture, gasoline refining, operation, maintenance,
and other services. The author cites that 73% of the greenhouse equivalent gases are
released during operation. MacLean et al. proposes viable alternatives to the use of
gasoline in vehicles. MacLean et al. emphasized that although battery powered vehicles
have zero emissions there were other factors, which have a negative environmental
impact such as the use of heavy metals [40]. Hybrid vehicles are also discussed as an
alternative, but “the higher sales price of the Prius is not justified by fuel savings,

emissions reductions, or a combination of the two.” [40]. Diesel fuel is also another
alternative, which has a well to tank efficiency of 24% while gasoline only has 20%
efficiency [40]. There are also some drawbacks to the use of diesel, which include higher
NO, and particulate matter emissions [40]. Ethanol is a viable alternative as an alternative
fuel source, and there are two renewable processes that can be used to obtain ethanol.
The first way is from plant cellulosic material. The well to tank efficiency for this
material ranges from 80-95% and the emissions are 15 g CO; equivalent gases/MJ [40].

The other way is to use corn to manufacture ethanol. This process releases 6 times as

23



much CO, equivalent gases/MJ as the previous process [40]. MacLean et al., also cited
that fuel cell vehicles are 20 years away from having a large number of these vehicles on
the road [40].

Other than fuels, life cycle assessments have been preformed on other sectors of
the transportation industry. One study focused on the catalytic converters for passenger
cérs [41]. The goal of the life cycle study conducted by Amatayakul and Ramnas was to
compare the life cycle impacts of a catalytic converter and the environmental benefits in
terms of emission reductions through the exhaust pipe [41]. The study on catalytic
converters focused on a cradle to grave study, but excluded the mining and transportation
of raw materials since no data was available. The criteria used for environmental loads
were global warming potential, waste, eutrophication, acidification, resource use and
photochemical ozone création potential [41]. It was found from this study that waste and
global warming are drastically increased, but acidification, eutrophication, and
photochemical ozone creation potential are drastically decreased [41]. Auxiliary power
units for diesel trucks were compared by Baratto et al [42]. The environmental criteria
used were the same criteria as mentioned by Shonnard et al. [8], but also included the
toxicity for humans, terrestrial spécies and aquatic species. It was found the auxiliary
power unit had the least impact for all the categories [42]. An economic analysis was
also conducted and it was found that the payback period was slightly over two years [42].

Other life cycle assessments have been done on consumer products. A life cycle
assessment was conducted by Shonnard et al., in which processes for various indigo dyes
for dying denim were analyzed. A 2-D plot was used with the axis being cost and

normalized environmental impact [22]. It was found that the dying the denim
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electrochemically in a 40% vat solution has the least environmental impact and the least
cost while dying the denim using indigo plants has the most environmental impact and
the most cost.

There have also been life cycle assessments conducted on the food industry. A life
cycle assessment was conducted on milk production by Cederberg et al. [43]. The study
;:onducted by Cederberg et al. compared organic milk farms to conventional milk farms.
For this study there was an increase in global warming due to organic farming, but a
decrease in other compounds such as carbon dioxide and N,O. Most of the acidification
potential for both of the systems was due to “ammonia evaporation from farmyard
manure” [43]. The eutrophication parameter was estimated for this study and was based
off of the manure application rate and a higher pﬁosphorous surplus on c'onventional
farms [43]. Cederberg et al., stated that organic farming reduces pesticide use, global
warming, acidification and eutrophication [43].

Zabaniotou et al. conducted a study on two types of egg packaging material,
recycled paper and polystyrene. The functional groups for this study were done on a
packaging basis instead of a mass basis. The environmental factors used in the study for
egg containers were global warming, ozone depletion, acidification, eutrophication,
particulate matter, heavy metals, carcinogenic substances and photochemical ozone
creation potential [44]. This study concluded “PS packages contribute more to
acidification potential, winter and summer smog formation, while recycled paper egg
packages contribute more to heavy metal and carcinogenetic substances impact.” [44].

Another study on food packaging was conducted by Bohlmann, which focused

on a comparison of polypropyiene and biodegradable packaging [45]. The functional
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unit for this case study was the packaging required to fill 1000 kg of yogurt." The
environmental criteria used for this comparison were energy and greenhouse gases. The
biodegradable package consumes less energy, but has slightly higher greenhouse gas
emissions. Bohlmann cited that the greenhouse' gas emissions are equivalent if the
biodegradable packaging is fully decomposed in the landfill [45].

Another study by Anderson et al. conducted a life cycle assessment on tomato
ketchup [46]. The study on tomato ketchup was intended to identify “hot spots” in the
life cycle of the product [46]. In this study, it was found that food processing contributes
the most to greenhouse gases, human toxicity (CML provisional method), and
acidification. From the study conducted by Anderson et al. the major contributor to
eutrophication is the agriculture sector [46].

There has only been a limited number of life cycle assessments conducted on
pharmaceutical products. The pharmaceutical sector has a unique situation unlike other
sectors. Improvements to the processing of various pharmaceutical ingredients can not be
made once a new drug application is filed with the FDA. There has onI)} been one study
conducted by Jimenez-Gonzalez et al on a pharmaceutical product.

Jimenez-Gonzalez et al. conducted a cradle to gate life cycle for a pharmaceutical
product for GSK[47]. The criteria used for this study were eutrophication, acidification,
greenhouse gases, photochemical ozone creation, energy and mass. It was found from
this cradle to gate study that the process contributes most to eutrophication, ozone
creation, total organic.carbon, energy and raw materials while energy contributes most to
~ greenhouse gas formation and acidification [47]. The manufacturing process is broken

down further and shows the impact of solvents, chemicals, and internal drug manufacture
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on the environmental criteria listed above. Jimenez-Gonzalez et al., also stated that
solvent selection contributes significantly to the impact of the ﬁanufachue of a
pharmaceutical product [47]. Solvents contribute 75% to the energy use, 80% of the
mass excluding water, and 70% of the ozone depletion {47]. Energy also contributes
70% to resource depletion and 90% to green house gas emissions [47]. Jimenez-
Gonzalez et al. also compared two processes for making sertaline. | These were the THF
and TOL processes‘ [48]. These two processes were analyzéd from the lab scale to the
production scale. It was found that in the processes the energy usage decrease by 70%
and 73% [48]. It was also found that there is no significant energy difference during the
final production stage of the product with regard to the 2 different processes [48]. The
(.:riteria used for this study were eutrophication, acidification, greenhouse gases,
photochemiéal ozone creation, energy and mass. It was found form this cradle to gate
study that the process contributes most to eutrophication, ozone creation, total organic
carbon, energy and raw materials while energy contributes most to greenhouse gas
formation and acidification [47]. The manufacturing process is broken down further and
shows the impact of solvents, chemicals, and internal drug manufacture on the
énvironmental criteria listed above. It was also found that there is no significant energy
| difference during the final production stage of the product with regard to the 2 different
processes [481.[ [49].

Jimenez-Gonzalez et al. also explained the limitations of life cycle analysis for a
pharmaceutical process [49]. Along with each route, the materials used in the processing
were taken back to preliminary starting materials such as crude oil, pre-filtered water or

1
corn. For these processes a life cycle assessment was conducted to determine which
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process is the more environmentally friendly process. For this analysis, terrestrial
toxicity, land use, and resource depletion were not considered during the life cycle
assessment [49]. Transportation of the raw materials was included in this analysis.
Allocation of energy and pollutants if a plant produced more than 1 material was
allocated on a mass basis. Solvent recovery for this process was assumed to be 75% for
full production and 0% for laboratory scale [4§]. Waste treatment was also considered in
thié paper. The waste treatment considered organic compounds, inorganic salts and
solvent incineration

The analysis was conducted using a life-cycle assessment software package,
ECOPRO® 1.5 but the author cites that other software packages were compared to
" ECOPRO®. These software packages included PEMS®, SIMAPRO®, and LCAIT®.
Several different models were also used during the analysis portion. These included
BUWAL, CML and Eco-indicator 95 [49]. There is a newer version of Eco-indicator,
which was released in 1999, which was not used for the analysis. A comparison was
made between various refineries using the various types of software packages. There are
some technical errors in the software programs that are not physically possible. When
comparing the methodologies .and soﬂw:;re packages the a‘uthors cited the example of
ammonia production as a case study to prove the point that different literature values give
different results in terms of materials used, water used, energy and emissions.  The
values the authors obtained were approximately the same as the values obtained from
EFMA and BUWAL for most of the parameters investigated. The authors concluded the
compounds in a typical LCA database are only a small portion of the compounds present

in any given pharmaceutical product and that it is difficult to obtain LCA data on the
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compounds that are not in a database due to legal ramifications [49]. Jimenez-Gonzalez
et al. fuﬂhér stated that a gate- to-gate estimation method is better than missing data. [49].
It appears as though there are some inconsistent values, which are presént in all of the
software packages. Unfortunately, the_ author does not recommend which software
package to use in pléce of another software package, which could be useful information.
The graphs given in the paper show that SIMAPRO® and PWMI® give the median to low
values as compared to ECOPRO®, PEMS®, and FRANKLIN® [49)].

A heating and cooling sub-module was developed to determine the heating,
cooling, and waste treatmerﬁ that is used in a process. This gave heuristics about how to
calculate the heating and cooling for each process and to back calculate the heating and
cooling emissions for the processes. Heuristics on lowering the energy input was not
included in the thesis. Using a methodoiog'y for lowering the energy is more important
- for future projects than lowering the energy in one specific project. One example for this
case would be switching the process from batch to continuous which would allqw heat
integration to be conducted on the final process. It should be noted that at the pilot scale
the largest decrease was noticed. The authors attribute this decrease to the reduction of
mechanical energy and that all the energy is being provided by electricity at the
laboratory scale. There was another issue with this article, which is that no processing
conditions are listed. It should be noted that most pharmaceutical processes do not have
significant heating/cooling and energy requirements simply because most operate close to
ambient temperature and pressure. For fermentation-based products, such as pravastatin,
there is very little heating or cooling required for the process, and the largest energy

usage can be attributed to the RO pumps and the mixers. In other processes, fugitive
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emissions from the process are approximately the same magnitude as emissions from
energy consumption. Heating and cooling could be neglected because these do not
constitute a large amount of energy usage in an LCA for many pharmaceutical processes.

Jimenez-Gonzalez et al described a methodology for comparing different
processes using 4 main categories for a comparison. These categories are environment,
safety, efficiency, and energy. These categories have a list of indicators for each
category. For example, for the environment category there are 4 mass indicators, which
are mass intensity, solvent inteﬁsity, waste intensity, and process emissions. These are
calculated on a weight-by-weight basis such as kg mass/ kg active pharmaceutical
product (API). The advantage to using a weight-by-weight method is that it incorporates
the percent yield into the category indirectly. The life cycle category only includes COs.
The individual indicators are compared and are given a score of 0, 5 or 10 with 0 have a
disadvantage, 5 being neutral and 10 having an advantage [49]. The scores were
averaged and the numerical average is correlated with a color that is put into the main
categories with 2.5 or lower being red, 2.5-7.5 being yellow and above 7.5 green [49].
From the life cycle assessment, it appeared as though the route that used ethanol as the
starting sol&ent was the most efficient and the most environmentally friendly process. '
The criteria that were used in other portions of the paper were global warming.poténtial,
ozone depletion potential, acidification, nitrification, carcinogens, smog formation, and
complexity of steps [49]. From the life cycle analysis, it appeared as though most of the
global warming potential came from the energy generation while the process emissions
contﬁbuted the most to acidification, nitrification, carcinogens, smog formation [49].

Transport related emission contributed to a large degree to the ozone depletion potential.
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The author cites that these percentages can be used to find the problem areas in each
process and to decrease the “problem™ areas. The process that used ethanol as the
starting solvent also had the smallest mass intensity [49].

With the larger indicators, the engineer or scientist can then look at the chart and
determine which category is “more” important and add a weighting factor to that specific
category. This method is open to interpretation of the engineer of scientist_ making the
decision on which process to use for the plant. This method also has a disadvantage
which is knowledge about the analyst’s own plant. The analyst may not know of a piece
of equipment that is being underused that could be used to clean up a waste stream which
would skew the results of the method. The alternative is also true; another project may
be in the process of being built which would push a certain process unit to capacity
without the analyst’s knowledge. The numerical method in general is also a
disadvantage. Having a scale from 0-10 is not the most accurate way to gauge
environmental criteria and could bias the analysis portion. A better way would be
normalize the data using the highest or lowest value.

Complexity was considered as a criterion by Jimenez-Gonzalez et al. [49].
They do not address the societal ramifications that could be considered when using
complexity as a criterion specifically for this drug that is an anti-depressant. Decreasing
the complexity for a process makes it easier for the manufacturer to make the drug, but it
also makes it easier for another person to make the drug illegally. For pain relievers and
anti-depressants, rﬁaking a more complex process may decrease the societal impacts.
There are other drugs such as anti-cancer medicines where this is not the case, due to the

well known and documented side effects of chemotherapy.
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Jimenez-Gonzalez et al. also use substance trees in their analysis. Substance trees
are a simple way to account for raw materials, but do not count multiple products from
the same plant. This makes it very easy to double count fhe mass and energy of side
products.  For example, in the manufacture of NaOH, there are several ways for
purifying sodium chloride where some processes use more energy and some processes /
use less [50]. Also, a byproduct of sodium hydroxide production is chlorine gas, which is
typically used to make HCIl, but the product tree shows these compounds in two
completely different areas {50]. HCI could potentially be made from methylene chloride
production, dichiorobenzene production, sodiurﬁ hydroxide production or all of these
processes as a side product [S0]. Another concern with this analysis is that everything is
on a comparison basis, thereby downplaying some areas of importance and making
negligible criterion as important problems that should be addressed in the process.

Solvent recovery, incineration, landfill, and waste treatment are all considered
[49]. The energy requir'ements and limitations are outlined effectively for each disposal
method. There was one disposal option that was left out. This option was selling the
solvent waste to another facility for use as a paint soivent. Use as a paint solvent would
drastically change the dynamics and environmental iniplications listed in this chapter.
The methods mentioned only account for the soil and water releases along with
chemically modified releases into the air. The compounds released during painﬁng area
direct solvent release into the air and will have a completely different impact. This also
provides an environmental justification for recovery and recycling 'of solvents vs.
disposal, but still does not consider solvent usage for other purposes outside the plant. If

an outside vendor was using the waste solvents as a solvent for another purpose, than
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using solvent recovery would contribute more to the environmental factors since fresh
solvent would have to be made for the outside vendor. In the case of solvent recovery,

more energy would be spent to purify the solvent for internal use inside the plant.
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Background of the Pharmaceutical Industry

There are a large number of issues that are present in the pharmaceutical field that
make the field unique. These issues include the manufacture multiple unique products, a
large nurmhber of coﬁstrajnts by the FDA, limiting factors within a process and separation
techniques that are benign to the compound. Some of these constraints are outline by the
FDA [51}

There are a number of issues with applying green engineering and life cycle
assessment to pharmaceutical products. The first issue is that comparative life cycle
asseésment studies are difﬁ.cult to conduct. Pharmaceutical companies make similar
products, but may have different processes. A‘given pharmaceutical company will not
give their various process parameters for a drug to a competitor for a comparison.

Another issue is that the green engineering and life cycle assessment studies are
typical conducted for internal documentation and not used when the new drug application
(NDA) is submitted to the FDA for approval. The prirhary concerns for consumers are
how well the drug works, the side effects of the drug, cost, and supply. Normally the
environmental sus'téinability of a drug is not a concern to the end consumer or the FDA.
There is another disadvantage that makes life cycle assessment difficult for drug
manufacturers. This is that most pharmaceutical companies make a variety of drugs
ranging ffom mild over the counter pain relievers to anti-cancer agents. . One day a drug
company may be making a statin drug and the next day making a drug, which has anti-

cancer properties or is an antibiotic.
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The benefits are that the company does not have to invest heavily in other
equipment costs and maintenance aﬁd this approach lends itself well when fermentation
is involx.ied since the time it takes from initiating fermentation to harvest usually takes 7
to 10 days. Another positive aspect is that fewer pieces of equipment save floor space.
It is much easier to provide space for 1 piece of equipment than 7 pieces of equipment.
Another negative aspect is that most of the equipmént is not specifically made for each
drug. For example, the centrifuge may be made to handle 10000 L/hr, while the
fermentation beer for the drug that is being processed that day may be»only 3000 L total.
To relate this to another industry that uses a distillation column. If the flow rate for a
distillation column was decreased by 70%, thel;e would be a large amount of issues such
as weeping. The other option available is to not separate or recycle the solvents. This is
typically the case since the volume of waste solvents produced is not worth recovery or
cannot be reused due to FDA regulations unless certain certifications are obtained for the
recycled solvent. There are other constraints that the drug manufacturers have to follow.

Pharmaceutical manufacturing can be broken down into two distinet categories,
biochemical and organic synthesis, which have distinct equipment for each. Within each
category the equipment used in thle manufacture of one drug is typically the same
equipment used to make all the drugs; there may be a few speqiﬁc pieces of equipment
for each drug, but most of the equipment is the same. For example a filter used to
separate a crystalline API from a liquid solvent may be used for 10 different productsin a
given year. This approach has both positive and negative conseqﬁenceé for the company.

Developing an LCA for this process is rather d_ifﬁcult because it is not a

continuous process. Allocation of the specific piece of equipment is also difficult since
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there is not a “good” way to allocate each process. Using the cost to manufacture a
si)eciﬁc drug is not an accurate way to determine the allocation of the equipment.

One drug may be 10 times the cost of another drug because of a raw material cost
or inclusion of a precious metal in the drug itself. An exambie of this would be in the
case of cis-platinium, which is an anti-cancer agent. If Platinum cost approximately
$900/ounce and accounts for 65% of the API weight then this would be a significant cost.

Another way to allocate the materials equipment is by using weight. There are
also drawbacks to this approach, which. are related to dosage. One drug may “work”
better then another drug, but may be made in a similar way.

There are some benefits for the use of green engineering in the pharmaceutical
field. Many drugs that go “off patent” are produced by other suppliers and are known as
“generic drugs.” A substantial portion of the generic drug industry success is dependent
on decreasing the solvent usa;ge and gaining a competitive advantage. A way of
achieving a competitive advantage is to reduce liability and environmental risk.
Competitiv‘e advantage is also gained by managing resources 'properly. A life cycle
analysis can be used to generate proper resource management and identify “problem”
areas in a process.

Another advantage is fhat life cycle assessment and green engiﬁeering allows
scientists and engineers to track their progress through drug development. This allows
the analyst to determine what aspect of the process has the most environmental impact.
The analysts can further édjust the process to mihjmiie the impact on the category by

changing the process.
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A third advantage is that potential drugs can be flagged because of increased legal
liability during the early stages of drug development. Once a life cycle study is
conducted, some software packages give results in either life-years or disability affected
lif‘e years (DALY). If the projected amount of lives saved is less than either the DALY or
the Life-Years, the drug should not be made o.r a large number of modifications should be
made to the process prior to the manufacture of the drug.

Most pharmaceuticals are produced in batch processes and the processing is
limited by some factor within the process. The limiting factor could be volume,
concentration, heat transfer, or stability of the product or an intermediate. This is
especially true for microbial produced drugs. Most drugs and intermediates are poisons
to microbes at various concentrations, so there may be a limited amount of drug that can
be produced per batch, regardless of how much intermediate is added or how much time
passes. There are also other unique factors, which make pharmaceutical proce:ssins(c,:r
different and include separation techniques employed.

Separat:ion of the drug from a solvent is very difficult process compared to the
separation techniques applied by other industries. = Traditional distillation and
crystallization will not work. Traditional distillation could potentially destfoy the
product. In traditional crystallization, approximately 10% by weight of material is used
to seed the solution, but this cannot be used in the pharmaceutical industry due to cross
contamination problems. The techniques employed consist of liquid-liquid extraction,
vacuum filtration, adsorption, crystallization with extremely small amounts of API, and
to some extent chromatography [53]. In chromatography there are a large amount of

scale up problems and this technique is usually avoided. The main focus of these
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separation techniques is to obtain a very i]jgh purity product. In order to obtain this high
purity product, the overall yield is sacrificed for the safety of the end consumer. In many
cases the recovery of other phase or medium is not considered because it is not cost
effective to safely recover an API, active pharmaceutical ingredient, from the waste due

to impurities.

Background for Green Analysis of a lab-scale fermentation based API

One way to produce a drug is by having microorganisms metabolize a certain
compound and change the compound into the desired drug. Although this manufacturing
route is typically greener than drugs made by organic synthesis, it is still is raw material
and separation intensive and consequently is an environment concern. Most of the
solvents used in these processes are volatile organic compounds. Strong acids and bases
are also typically used in the processing to change the solubility properties of the desired
compound in a solvent.

Manufacturing pharmaceuticals by a fermentation route originated over 80 years
ago. Many organic chemicals were made via fermentation in the early 20™ century
before alternative synthetic routes were discovered. Some chemicals previously made by
fermentation include citric acid and acetic acid [52]. Fermentation invoives many steps
in the production of a chemical. Most of these steps involve'separatiné the desired
product from the microorganisms and the by-products and wastes produced by the

microorganisms.
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There are a lot of material specifications that must be met for the raw materials
that are input into the process. The plants that are used to manufacture pharmaceuticals
are much like the clean rooms in the manufacture of microchips. Even water for these
processes has to meet a certain specification. This specification is usually met by using
reverse osmosis followed by deionization to remove molecules that may inhibit microbial
growth, which is followed by a UV treatment. These molecules are typically added to
water to inhibit microbial growth. Treating water in this way allows microbes to grow
uninhibited by antimicrobial .agents present in tap water [53].

The water cannot be used directly from a public water supply because any
microbes that are added may die. On the other hand, treating the water and storing it
under “open conditions™ allows undesired microbes to grow in the water prior to use,
which would result in the water having to be retreated. This contributes substantially to
the energy required for a process.

Most pharmaceuticals made by biochemical engineering routes are produced in -
batch processes [53]. The use of a continuous process for fermentation is typically not
feasible. The problems with continuous fermentation include having an extremely large
reactor, the growth rate of the microbes, control of the microbes, and other problems.

The manufacture of drugs using biochemical methods from microbes is very
separation intensive. For many pharmaceutical processes, the desired ‘materials are
relatively unstable at high temperatures and require specialized separation techniques.
These compounds include proteins, amino acids along and other compounds. These
chemicals can also change the crystal structure at higher temperatures. This lcould result

in lost product at best and at worst the formation of a toxic substance. These compounds
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require separation techniques that are typically solvent intensive. The techniques
employed consist of iiquid-liquid extraction, vacuum filtration, . adsorption,
crystallization, and to some extent chromatography [53]. Typically drugs made from
fermentation are produced in relatively low concentration in the process. For example,
pravastatin made via fermentation is only present in 3 grams per liter in the initial
fermentation broth [54]. Eveﬁ ethanol produced via fermentation is on the order of 50
grams per liter [55]. The main focus of these separation techniques is to obtain a very
high purity product. In order to obtain this high purity product, the overall yield is
sacrificed for the safety of the end consumer. In many cases the recovery of the other
phase or medium is not considered because it is not cost effective to safely recover an
API, active pharmaceutical ingredient, from the waste due to impurities.

Over a perioci of time, drugs are replaced with newer drugs that have more
benefits and/or less side effects. Also' generic manufaqturers produce their own versions
of the drug, which is the case of pravastatin (sodium). Life cycle analysis plays arole in
devéloping these new drugs so that these drugs can be made using the same technology
or more advanced technology. Environmental management not only contributes to
recovering investment costs, but also allows for greater efficiencies in the process.

There are also drugs, which are not made by fermentation, but by organic
synthesis. Products made in this way have proceséjng that i1s completely unique from

products made by fermentation.
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Scale up of an active pharmaceutical ingredient

The majority of pharmaceutical products are made by organic synthesis. The
drug studied in this section of the thesis was made by an organic synthesis route. For this
drug the scale up that is involved during the production of a drug was analyzed. The
scale uﬁ is more useful to a pharmaceutical company that invented the drug since this is
extremely different then other industry. o

During the scale up of a specific drug, the R&D scientists and engineers have to
be mindful of various health, Safety, and processing of the drug while scaling up. In this
industry, most of the lab scale equipment is very similar to the pilot and full-scale
equipment to minimize scale-up difficulties, but there are always other proble;ns that
arise. |

For this analysis data for one specific drug, Drug A, was obtained and was tracked
from the lab-scale to the pilot plant scale. Typically there were a widé range of changes
that are made from the lab scale to pilot scale. These changes include, but are not limited
to, solvent substitution, reagent substitution; equipment substitution, etc. It was found that
there was need for an easy to use solvent selection table so that the scientist and engineers
could determine the environmental effects of the replacement of solvent with another

solvent.
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Chapter 2: Definitions for the Green Analysis of the

Pharmaceutical Products

There are wide ranges of metrics that can be applied to the processing of the drug.
These metrics are dependent on where the boundary of process is set. The boundary of
study lhﬁits the analysis to processes, which are pertinent\to the process. The boundary
conditions are the same for each comparison. Once the boundary is set, an analysis can

be conducted regarding the various metrics used.

Boundary, Scope and Functional Unit

As an initial estimate the boundaries for this analysis will be designated as basic
raw material input and drug output. Drug output in a crystallized form was chosen.
Withiﬁ these boundaries there are manufacturing processes consisting of various reaction,
and separation processes. The scope of this life cycle assessment and life cycle
inventory includes the drug prior to formulation. Formulation of the drug was not
included in this analysis due to the variability of the dosage.

The functional unit for both drugs was 1 kg of API. A functional unit was used to
normalize the data so a valid comparison could be made. All data was averaged and |
expressed in terms of a 1 kg unit of this drug. This unit was chosen because it could

easily be converted to other functional units in the industry.
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For the scale up of an active pharmaceuﬁcal product {API) a gate-to-gate analysis
was used. This was chosen because some steps were outsourced to another company.
The company who was making the drug does not have a large amount of control over

how the intermediate is made.

Types of Metrics used by Pharmaceutical Companies

There are a number of different metrics that are used to determine the safety and
sustainability of a process. These included metrics (both public and proprietary) used by
individual pharmaceutical industries and various chemical engineering societies. There
was some ov¢rlap between the methods, but each organization has their own unique
metric representation. These include mass, energy, water usage, waste management,
along with other processing conditions and environmental considerations.

There is a broad categdry called processing metrics. The metrics in this category
include mass, energy, water, and solvent usage along with waste management issues and
solvent recovery. These factors are considered more frequently than the other metrics
since these are the basic oi)erating parameters of a chemical plant. All of these factors
are typically used in pharmaceutical applications.

There are number of ways that mass can be reported. Gonzalez et al., used mass
intensity as metric [56]. Mass intensity is the amount of total mass needed to make 1
kilogram or pound of a product. This meiric can be found by using the yield for the
upstream process, and the summation of the mass of solvents and water used in the

process. This approach is used by two engineering societies; AIChE and IChemE as
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complementary metrics [57] [58]). There is a method described by Schwarz et al, which
is called “material intensity” [59]. This is the same metric, except with a namé variation.
Another method to compare mass can be found by using the mass and dividing it by the
dollar amount of the final product. This is the method that is recommended by the
AIChE and is also used as a metric by IChemE [57], [S8]. There is a third way that can
be used to determine the mass of material. This approach uses a mass balance on the
material and does not take into account the mass of product or dollar value of the product.
This approach is useél by Cue and is also used by IChemE as complimentary ﬁethod to
report mass [58], [60].  There are other metrics by AIChE Sustainability Institute and
IChemE, but these metrics are not typically used. These include the percentage of mass
recycled, the percentage of renewable resources used, and the total mass divided by the
value of money added to the product by the processing steps..

There are 3 unique methods in reporting the energy usége for a process. The
simplest method is an energy balance on the process, which only takes into consideration
the total energy used for the process [57], [58], [60]. The second method for reporting
energy is reporting the value in the form of energy intensity, which.isv calculated similar
to the mass intensity (total energy used for the process divided by the mass of product
produced). This technique was uéed by Jimenez-Gonzalez et al, Schwarz ¢t al, and is a
complimentary metric of the AIChE energy metric [56], [59], [S7]. The other approach
to calculate energy intensity is on a per dollar basis. The energy is found by dividing the
total energy used by the value of the product sold. This is the preferred method of AIChE

[57]. Thére are other metrics by AIChE and IChemE that are not used in a typical
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analysis. These include the percentage renewable energy used, and the total mass divided
by thé value of money added to the product in the processing steps.

The AIChE metric for water usage uses a water balance on the process to report
the water used, but does not consider the amount of product or the price of product [57].
This method is also used by IChemE, but reported on a yearly basis [58]. IChemE uses
other methods for determining the water usage [58]. The first of these methods is found
similar to the energy and mass intensities and is calculated by dividing the amount of
water consumed by the total mass of the product. This method was also used by Schwarz
et al. [58] [59]. The other method of reporting water usage is used by Tallis et al. this
was found by dividing the total water usage by the value added to the chemical because
of processing [58].

Waste is another metric that is frequently cogsidered. There are a few methods of -
reportiné waste and waste generation. Cue measured the total waste of the process [60].
Jimenez-Gonzalez et al. and Taylor both used waste intensity as a metric [56], [61]. The
waste intensity is found similar to the mass intensity (total amount of waste divided by
the mass of product). Taylor utilized a unique approach to waste intensity by further
delineating the waste into two different categories, liquid waste and solid waste [61].

Solvent usage is another factor that is considered in sustainability. This factor is
specifically a problem in the pharmaceutical industries. J imenez-Gonzalez et al. uéed
solvent intensity as a factor for sustainability.[S 6]. Solvent intensity is defined as the
amount of solvents including volatile organic compounds (VOCs) needed to make 1
kilogram of final pharmaceutical produc.t. In Taylor’s Greenness Scorecard, there is a

solvent rating guide. This allows the user to determine which chemical is less or more
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harmful based on a 0 to 4 scale. Solvents which are 4 are the most environmentally
friendly solvents, such as ethanol and water [61]. Taylor’s Greenness Scorecard used
percent solvent recovery as one of the criteria [61]. Cue did not consider solvent
recovery but used fresh solvent usage as a criterion. This would result in the same
conclusion as the Greenness Scorecard. There is another consideration when solvents are
considered in a process. This metric conside:red the recovery and reuse of solvent from
another company’s waste [58].

Volume is typically a limiting factor in most pharmaceutical applications since
the volume is typically the bottleneck in the manufacture of pharmaceuticals. Volume is
also used as a metric in pharmaceutical processing. Many liquid chemicals, such as the
solvents used in processing are typically expressed as volume instead of mass. Cue used
the maximum volume to find the volume of the process [66]. The maximum volume is
defined as the processing step where the largest volume is present. This is approach is
typically used in batch processing to find bottlenecks in the process, since the size of the
reactor limits the amount of solvents that can be used initin a giveh batch and therefore
the material that can be produced. Taylor used volume intensity as a metric [61].
Taylor’s approach was similar to Cue’s approach except that the maximum volume was
divided by the mass of the product produced.

Fugitive emissions are the amount of released material that is attributed to
unavoidable emissions. There are two methods that are used for reporting the fugitive
emissions. Schwarz et al. and Cue used one method, which was to count the total
fugitive emissions for the process [59], [60]. There are disadvantages and advantages to

this approach. The advantages is that most simulation programs for emissions give total
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emissions in a form used by most government agencies. The disadvantage is that process
improvements will not show up if there is an increased yield of the drug. The second
method is used by Gonzalez et al. and Taylor and is called the fugitive emission intensity
[56], {61]. This is calculated in a similar fashion as the mass intensity. This is the
fugitive emissions divided by the total mass of product produced, typically in kilograms.
Gonzalez et al., used the same mass units for all of the intensities, which is kg/kg API
[56]. Taylor used different mass units to differentiate between soﬁd, liquid and fugitive
emissions, which are given in kg/kg API, L/kg API, and Ib/kg API respectively [61].

Time is another factor that is used as a metric [56], [60], [61]. Time is not direct
metric, but has environmental implications. Typically fugitive emissions are a function
of time; the longer the process, the more fugitive emissions are released. The second
environmental impact with time is with solvent usage and solvent recycling. More
solvent could be recycled if the process was continuous or a processing step only took a
short amount of time. Typically longer times reflect negatively on the procéssing
conditions. Also since most pharmaceuticals are made in batch processes, longer times to
make the product also limit the amount of API that can be made since some drugs can
take weeks to months to produce.

Yield is another factor that is routinely considered as a metric. All the yields are
calculated on a mole basis. This is the traditional method for reporting yield. The reason
for including yield as a metric is because as the yield increases for a given batch the
various other metrics will decrease. Yield, alsc’> to some degree, reflects on the
complexity and number of processing steps. As a process becomes more complex or

more steps are included the overall yield decreases due to loss of product in various waste

47



streams. Jimenez-Gonzalez et al, Cue, and Taylor used this metric [56], [60], [61].
Taylor’s Greenness Scorecard ‘has a unique algorithm for calculating the yield. This
method also included the increased difficulty of reaching extremely high yields. This
also factors in the step yields. For example if a'process has two steps each with a 50%
yield, the overall yield would be 25%. Obtaining a 10 to 20% overall yield is relatively
easy compared to having a yield of 90 or 99%. |

There is also another step related to yield which is the number of unit operations.
This is the number of unit processes involved in each processing step. Both Jimenez
Gonzalez et al. and Taylor use the nmﬂber of- unit operations as a metric [56], [61]. As
the number of unit o;ﬁerations increases, the amount of mass, energy, and water needed
increases. As the number of sieps increases, the yield typically decreases due to product
left in a previous pieces of equipment.

Conversion we;s also used as a metric by Gonzalez et al. and Taylor [56], [61].
The same reasoning for the inclusion of yield also applies for conversion. Conversion is
slightly different then yield in that conversion is a reflection of the conversion of raw
material to product while yield is the total usable output of drug. For example, a given
process may convert 95% of an intermediate to product, but only have a 50% yield due to
isolation losses.

Safety metrics were also taken into consideration. Jimenez-Gonzalez and Taylor
both gave a broad view of occupational hazards and process hazards [56], {61]. Taylor
gave specific examples of process hazards in the Greenness Scorecard such as worker

exposure limits [61].
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Process hazards could be independent'of the occupational hazards. These ére
exclusive to Taylor’s Green Scorecard [61]. These metrics include dust explosion
potential, charge dissipation, pressure rise rate, explosion energy, use of excessive
reagents, and the formation of gaseous byproducts. Most of these factors are based on
process safety. These issues are typically a large concern in the pharmaceutical industry
since small particles are typically produced. The use of excessive reagents and the
formation of ge;seous by-products can be found through a balanced reaction. An example

is given below for a typical chlorination reaction

2Cl, +CH, ——2HCl + CH, (I,

There are chemicals that a few éompanies do not use because of the liability
associated with these chemicals. Taylor uses this metric as “number of listed reagents” in
his Greenness Scorecard [61]. This metric can vary from company to company, and is
dependent on past problems with the chemical compopnd. For example, these chemicals
could include benzene, cyanide complexes, and certain organic compounds.

There is also a classification of environmental metrics based on overall ecological
concerns. These metrics include a human health metric, carcinogenicity, ozone
depletion, global warming potential, eutrophication, smog formation, an eco-toxicity
metric, acidification, biopersistent materials, societal implications, and land use.

The human health metric is a metric cited by AIChE as a sustainability metric

[57]. The formula for this metric is shown in Equation 1.
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Equation 1

Mass* BCF * I/ Life
HHM = A ki
TLV
Where:

HHM is the human health metric
Mass is the Mass of the compound
BCF is the Bio-concentration factor

Y life is the multimedia-weighted half-life

The PEL and TLV are set by various organizations as the maximum exposure a
worker can have without adverse effects. The threshold limit values can be found on
MSDS sheets from various chemical suppliers such J.T. Baker or Fisher Scientific and is
set by OSHA [62], [63]. There are cases when the TLV data was unavailable because of
the lack of study_ of the chemical, lack of use for the certain chemical or the chemicél is
deemed safe. Some chemicals that are deemed safe are meat extract, which is an
ingredient for microbial growth, water, and sugar. When this was the case, the specific
chemicals are not included in fhe toxicity criteria. This is because the human health
rﬁetric for the chemical is close to zero. The persistence is the time it takes for the
material to decompose. The bioconcentration factor is the propensity of the compound to
be absorbed by the body and not metabolized. The persistence and the bioconcentratibn
factor can be calculated using group contribution theéry. The calculation used for‘ the
persistence and bioconcentration take into account every bond in the molecule and the
time it takes for the bonds to break ddwn. This is somewhat redundant of some of the

safety metrics, which are mentioned by Taylor and Jimenez-Gonzalez et al, but this
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metric takes into account the half-life of the material of interest. Taylor also counts the
bio-persistent as a separate metric [61].

The eco-toxicity metric is a metric cited by AIChE as a sustainability metric [57]
and is calculated in a similar manner to the human health metric. The eco-toxicity
represents the toxicity to aquatic species. This metric is found by multii)lying the mass of
the compound by the bioconcentration factor and the multimedia weighted half-life
divided by the lethal concentration to kill 50% of fish over 14 days. Most of this data can
be found from MSDS sheets and calculated using group contribution theory for the
persistence and bioconcentration factor. IChemE has tabulated a small list of compounds
with eco-toxicity potency factors [58]. This list contains heavy metals, along with
selected organic and inorganic compounds.

Carcinogenicity is another metric of concern. Carcinogenicity is hidden within
other categories such as worker exposure limits, process hazards and process safety [56],
[61]. The sustainability metrics by IChemE inciude carcinogenicity as a stand-alone
metric. IChemE gives various potency factors for the carcinogens. listed with the baseline
carcinogen, benzene, having a carcinogenicity value of 1 [58].

Global warming potential is another metric that is a concern. There are a few
methods available on reporting this metric. The first method is by analyzing the global
wanniﬁg potential of the materials present in the procesé. The table provided by IChemE
gives guidance about which materials should be considered contributors of global
warming. Most of the compounds listed are halogenated hydrocarbons, but carbon
dioxide and monoxide are included in the table along with a blanketed category for

volatile organic compounds [58]. AIChE has the core metric that is expressed in terms of
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CO; equivalents per dollar value of the product. There are other complementary metrics
listed by AIChE',‘ which are CO, equivalents per mass of produpt sold, and CO,
equivalents per dollar value added from processing [57]. Another technique of
determining global warming is by using life cycle assessment software. Jimenez-
Gonzalez et al. employed this method in the life cycle analysis of pharmaceutical
compound, which used a complementary metric mentioned by AIChE [57], [64].

Ozone depletion is an environmental metric that is considered >by various
organizations. All of the compouﬁds that are ozone-depleting compounds are

halogenated hydrocarbons. The table provided by IChemE gives guidance about which
materials should be considered contributors of ozone depletion. Typically, CFC-11,
which is a chlorofluorocarbon, is used as the baseline for ozone depleting subst-ances and
is given a potency factor of 1.

Photochemical smog fonﬂation is a category typically considereci as a
sustainability metric. AIChE has a core metric that is expressed in terms of kilograms of
ethylene equivalents per dollar value of the product. There are other complementary
metrics listed by AIChE, which are kilograms of ethylene equivalents per mass of
product sold, and kilograms of ethylene equivalents per dollar value added from
processing {37].

Eutrophication is a criterion, .which is used as a metric for sustainability.
Eutrophication is the process where bodies of water receive excessive nutrients. This is
mainly attributed to phosphorus and nitrogen containing compounds. There are a few
methods on reporting eutrophication. AIChE has a core metric that is expressed in terms

of phosphate equivalents per dollar value of the product. There are other complementary
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metrics listed by AIChE that include phosphate equivalents per mass of product sold, and
phosphate equivalents per dollar value added from I;rocessing [57]. Another technique of
(ietermining eutrophication is by using life cycle assessment software. Jimenez-Gonzalez
et al. employed this method in the life cycle analysis of pharmaceutical compound, which
used a complementary metric mentioned by AIChE [57], [64]. Another method of
reporting eutrophication is by usiné the potency factors given by IChemE. The table
given by IChemE represeﬁts the typical factors that contribute to eutrophication [58].

Acidification is considered as a sustainability metric and is defined as the
emissions that cause acid rain. These emissions can result from direct processing, or as a
result of combustion. AIChE has a core metric for acidification that is expressed in terms
of kilograms of SO, equivalents per dollar value of the product. - There are other
complementary metrics listed by AIChE that are given as kilograms of SO; equivalents
per hlass of product sold and kilograms of SO, equivalents per dollar value added from
processing [57]. Another technique for determining écidiﬁcation is by using life cycle
assessment software. Jhnenez-Gonialez et al. employed this method in thé life cycle
analysis of pharmaceutical compound, which used the complementary metric mentioned
by AIChE [57], [64]. Acidification can also be calculated by using the potency factors
givén by IChemE. The table given by IChemE represents the typical factors that
contribute to acidification that is given on a basis of tons of H" ions released per year
[58].

There are two more environmental categories that are still in development. These
include the societal impact of a product or process and land usage. The publication by

IChemE offers some guidelines for each of these two categories, but these are not widely
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used or developed. The societal impacts include meetings with external shareholders,
benefits from the company, the number of complaints,‘ and legal actions that are taken
against the company. This can either be established on a ﬁoneta.ry or yearly basis [58].
The land use metric is also described By IChemE and accounts for waste disposal and
some of the environmental parameters [58].

From these metrics, a list of metrics was chosen to compare the pharmaceutical
products discussed in this paper. The processing metrics for this paper included total
mass, water, solvent, and waste intensities. Alsp included were energy intensity and
fugitivé emissions.

A list of environmental criteria was also developed. The environméntal criteria
included weighted factors f;r global warming potential, ozone deplétipn, smog
formation, carcinogenicity and acidification. Other factors were also inéluded which are
derivatives of the human health and the environmental metrics, but do not account for the
bioconcentration factor or half-life of the compound. These are the inhalation toxicity
metric and aquatic toxicity metric. The inhalation toxicity has the same f(;rmula as the
human health metric, but without the BCF and haif-life factors. The aquatic toxicity has
the same fonﬁula as inhalation toxicity, but uses the LCsp for fish inétead of the TLV.
There was another metric added. This metric is the inge'stion toxicity. This can be found
similar to the inhalation toxicity, but uses the LDs, for rats instead of the TLV.

These metrics were applied to two studies to determine if there were any trends
present. One study consisted of the green analysis of a lab-scale fermentation Based

pharmaceutical product. The other study focused on the scale up of an active

pharmaceutical ingredient made by organic sythesis.
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Chapter 3: Green Analysis of a lab-scale fermentation based
API

Pravastatin, which is made by Bristol Myers Squibb, was chosen for this analysis
since a number of processes have been investigated for the manufacture of the drug.
There are two fermentation steps involved in the manufacture of pravastatin. ML-236B
is the intermediate and is made in the first fermentation step by one type of fungi [65]. In
the second fermentation, an intermediate is converted to pravastatin by anothér type of
fungi [54], [66], [67], [68]. These processes were defined following two patents, one for
pravastatin and one for the intermediate. Variations and improvements in the intermediate
process is beyond the scope of this analysis. For this process the emissions released by
the fungi are assumed to be zero since the mass of microbes is insignificant in the

fermentation beer [53].

Processing

The first process in the manufacture of pravastatin was in 1982, which had an
extremely low yield. This is given in Figure 2 and Figure 3 [66]. The flows frorri v‘t.he
patent do not reflect the actual operating procedures used in large-scale production, but
are lab-scale applications. If the intermediate process is not included and a linear scale up
is assumed, the amount of waste generated would constitute over 1,307 drums which hold
55-gallons each of waste for each kilogram of active pharmaceutical ingredient (API)
produced [66]. Most of this waste is water, but the water still has to be treated since it

may contain microbes or harmful microbial by-products and unused reactants.
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These two processes are given on different scales so both these processes need to
be scaled up. Each chemical was totaled for use in the processes for the LCI:
For the pravastatin and intermediate processes the scale up can be seen in Table 1 and

Table 2.

Table 1: Scale up of Pravastatin Process

Amount of Material
Pravastatin 1982 needed tc make 50.1 To make 1 kg
mg of pravastatin
Compounds (kg)

Water 8.55 170,659
Glucose 0.04 798
K2HPO4 0.003 60

MgS04 * 7 H20 0.003 60
NH4NO3 0.002 40
Peptone 0.002 , 40

Corn extract 0.004 80
Yeast Extract 0.002 40
Intermediate 0.01 ‘ 200
C2HF302 0.1218 2,431
Ethyl acetate 2.7 53,892
NaCl 0.1 1,996
Sodium bicarbonate 0.03 599
Sodium sulfate 3 59,880
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Table 2: Scale up of Intermediate Process

Kg needed to make Kg needed to make
Compounds (kg)
12.8 g of intermediate 200 kg of intermediate
- Water 3000 | 46,875,000
Glucose 63 984,375
Peptone 3 46 875
Penicillium 85 1,484,375
HCL 1.875 29,296.88
Ethyl Acetate 450 7,031,250
Silica Gel 5.18 , 80,937.5
Hexane 2825 4,414,063
Acetone 25.5 398,437.5
Benzene 27 42,1875
Ethanol 12 . " 18,750

Figure 4 and Table 3 show the amount of material needed to méke pravastatin in
1983, one year after the original patent was filed. Theré was a substantial improvement
in the overall yield due mainly to optimal microbe selection. The microbe selected for
this patent had over a 10-fold increase in the amount of material obtained than the patent
in 1982. In the 1983 patent there were other processes mentioned to make statin drugs.
These methods were more energy and waste intensive and involve live animals such as
dogs, along with other processes that involved animal by-products such as homogenized
rabbit liver. The procesS flow sheet is given in Figure 4. The two tables show amount of

material needed for each process. These tables can be seen in Table 3 and Table 4.
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Table 3: Scale up of Pravastatin Patent

Pravastatin 1983

Material {Kg) needed

to make 600 mg

Material (Kg) needed to

make 1 kg
pravastatin
Compounds (kg)

Water 2.24 3733
Glucose 0.021 33
Peptone 0.0020 7

Com Liquor £.0061 10
Yeast Extract 0.0020 3
Intermediate 0.0010 17
Meat Extract 0.0020 3
C2HF302 0.009 15
Ethyl acetate 1.24 2067
NaCl 0.1 167
ether 0.216 360
diazomethane 0.024 40
Benzene 1 1667
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Table 4: Scale up of Intermediate Process

Material (Kg) needed to make Kg needed to make
Compounds
12.8 g of intermediate 17 kg of intermediate
Water 3000 3,984,375
Glucose 63 ' 83,672
Peptone 3 ) i 3,984
Penicillium 95 126,172
HCL ‘ 1.875 2,490
Ethyi Acetate 450 597,656
Sitica Gel 5.18 6,880
Hexane 282.5 375,195
Acetone 255 33,867
Benzene 27 3,586
Ethanol 12 1,694

In one year, the waste production decreased by over 92%. - From the patents, the
main reason for the decreése was due to microbe substitutidn for this process. For this
example given in the patent, 35.3 drums which hold 55-gallons of waste are produced per
kilogram of drug. Also it should be noted that less intermediate was used so all of the
processing masses in the intermediate process can be decreased 1i)y over 91%. Thisisa
- large decrease for a one-year period of time. There was still a net decrease in the amount
of benzene needed due to the amount of benzene used in the intermediate process.

In 1985, another patent was filed on the production of pravastatin. In this patent,

pravastatin was made in a similar way, but another microbe was chosen. With the
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microbe rocardi autotropica subspecies amethystine FERM 6183 approximately 5 times
the amount of pravastatin was obtained compared to the patent in 1983 [68]. The table
for the materials used for this patent is given in Table 5 and Table 6. The decrease in the
amount of intermediate needed can also be seen in Table 5. Again there was another
decrease in the amount of materials needed to make pravastatiri. The process flow sheet

did not change significantly and can be seen in Figure 5.

Table 5: Scale up of Pravastatin Patent

Material (Kg) needed to Material (Kg) needed to
Compounds .
make 2.6 g pravastatin make 1 kg
Water 4 1379
Giucose 0.02 7
Peptone 0.002 1
Yeast Extract 0.002 1
Intermediate 0.0008 55
Meat Extract 0.002 1
C2HF302 0.0902 31
Ethyl acetate 34 1172
NaCl 0.356 123
Sodium suifate 2 690
Sodium bicarbonate 0.05 17
Benzene 07 241
Acetone 0.3 103
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Table 6: Scale up of Intermediate Patent

Compounds

Material (Kg) needed to

make 12.8 g of intermediate

Material (Kg) needed to

make 5.5 kg of intermediate

Water 3000 1,289,063
Glucose 63 27,070
Peptone 3 1,289

Penicillium 95 40,820
HCL 1.875 806
Ethyl Acetate 450 193,358
Silica Gel 5.18 2,226
Hexane 282.5 121,387
Acetone 255 . 10,957
Benzene 2.7 1,160
Ethanél 1.2 516
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Figure 5: Process Flow Sheet for the 1985 Pravastatin Patent

Another patent to make pravastatin was also ﬁled in 2004. In this patent there
was another significant decrease in the amount of materials needed to produce
pravastatin. The decrease was attributed to process improvements. This can be seen in
Figure 6 and in Table 7. For this process, six 55 gallons drums of waste are produced per
kilogram pharmaceutical product. Again this is another improvement for the processes.

The intermediate process is shown in Table 8.
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Figure 6: Pravastatin Process from 2004 patent
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. Table 7: Scale up of 2004 Pravastatin Patent

Material (Kg) needed to | Material (Kg) needed
Compounds
: make 16.5 g pravastatin to make 1 kg
Water 18.92 1146
NaOH 0.01 .607
Methanol 0.916 ' 55.6
HCI 0.00b075 .0045525
Acetone 5.06 307.3
Carbon 0.001 0.0607
Intermediate 0.0275 1.67

Table 8: Scale up of Intermediate Process

Material (Kg) needed to

Material (Kg) needed to

Compounds (kg) make
Make 12.8 g of intermediate
1.67 kg of intermediate
Water 3000 391,406
Glucose 63 8,220
Peptone 3 391
Penicillium 95 12,395
HCL 1.875 245
Ethyl Acetate 450 58,711
Silica Gel 5.18 676
Hexane 282.5 36,857 '
I Acetone 255 3,327
Benzene 27 352
Ethanol 1.2 157
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Energy usage

For all of these processes, the mixing operation and reverse osmosis system (used
to make the pharmaceutical grade water) contributed the most to the energy usage. With
respect to the pravastatin process in 2004, the energy required by the reverse osmosis
éystem accounted for 25 % or the total energy usage in the entire procéss. The liquid in
the other pumps is assumed to be at ambient pressure and temperature and only a
minimal pressure drop is required. The other large contributor to energy consumption is
the mixer/compressors used for agitation within the fermentation tank. This accounted

for 58.9% of the total energy use;ge. Table 9 shows the energy usage for the lab-scale
pravastatin process for 2004. A comparison of the energy required for the other
processes to make the 'intennediate and pravastatin is unnecessary since there is a direct
correlation between the volume of water needed and the energy consumption, mainly due
to reverse osmosis and mixing. A linear relationship can was developed for the energy
required for the other processes based on the water usage since there was not a large

difference in the processing equipment for all four patents.
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Table 9: Energy Usage for the 2004 Lab-scale Fermentation for Pravastatin

Pravastatin process MJ used/kg drug
RO pump 126
Pump 1 1.65
Pump 2 0
Pump 3 1.65
Pump 4 0.68
Pump 5 0.68
Pump 6 0.72
Pump 7 0.3
Pump 8 0.35
Pump 9 21.69
Pump 10 0.04
Pump 11 0.04
Pump 12 0.04
Pump 13 0.01
Pump 14 0.01
Pump 15 0.01
Pump 16 0.35
Pump 17 0.35
Pump 18 0.35 -
Cooling unit 1 21.5
Cooling unit 2 15.6
Centrifuge 1 0.2
Mixer 1 289.9
Mixer 2 8.05
Mixer 3 0.53
Mixer 4 4.83

Fog this process it was assumed that the fuel for the generation of electricity was
fuel oil number 2. Fuel oil number 2 is a typical fuel used in chemical plants for
electricity generation. The heat of combustion for fuel oil number 2 is 44812 KJ/Kg. It
was assumed that the efficiency between the generation of electricity and resistance is

50% due to frictional loses. For the pravastatin procéés there are a total of 991 MJ used.
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| S1nce the mass is known the amount of em1ssrons released was determmed by a mole -
balance. From thlS calculatron it was found that. for thls process 163 1bs of COz, 0.1 1bs-
of NOy and 0. 22 Ibs of SOz are released per kllogram of pravastatm
There was another reason to 1gnore the negl1g1ble energy consumptron There isa .'
way to recover the energy of- the retentate water wh1ch is still at the feed pressure. The
 pressurized .water in m’ost rndu’stnes is used to sp1n a-.turbme. Wrth respect to other .
reverse osmosis systems approximately 30% of -the energy used is re'covered for a typical . '
desalination plant ‘[69]; This c.an be ex’trapolate_d for this"specitic s.y.stem_.. ‘Approxirnatelyl |
- 6% of the energy can be recovered frorn: this .spe(':iﬁ.c reyerse osrnosis system. ThlS ' .
amounted to 5l9 46 MJ 'w'hich.is enongh energy to power most‘of" the. other pieces of
Aequ1pment and would save 9 8 Ibs of COz, 0.006 1bs of NOx, and 014 1bs of SOz from
| being released Table 10 lists the emissions 1f the reverse osmos1sland m1x1ng are taken
into con51derat1on- for all these processes wrthout 1nclud1ng any other p1eces of
'equ1pment The 1ntermed1ate and pravastatm processes are 1ncluded in. each of the years
listed. F1gure 7 also shows the decrease in energy.related em1ss10ns The decrease was

attributed to less energy that was needed to purlfy wat_er and in mrxmg.
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Table 10: Energy Related Emissions for the intermediate and Pravastatin Processes

Patent Year| CO2 (lbs) NOX (ibs) | SOX (Ibs)
1982 6,691,486 4,105 9,031
1983 567,244 348 766
1985 183,545 113 248
2004 55,834 34 75

The energy related emissions are shown in Figure 6. There is a significant
decrease from patent years 1982 to 2004 for CO,. The trend for‘ NO, and SOy are the
same as CO,, but on a smaller scale since coﬁppsition of fuel oil did not change. The
energy decrease is a function of the yield increase since a large amount of the energy is

used to manufa(_:ture the water and to stir the fermentation tank.
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Figure 7: Energy Related CO, Emissions for the Combined Intermediate and Pravastatin Patents



Process Metrics

For the process 'vr‘netrics.th‘ere ‘were a few factors that were considered. These
factors inciude wﬁtér 1ntens1ty, solvent 1ntensxtyandxmassmten51ty The infenﬁediate
pfécess was not included in the water, sol\{ent, or mass ihtensity,_but as énother criteria
éaﬂléd intérmediafe intensity since thé' intermediatg procésé wQﬁld d;Narf the pravastatin
proces's‘i'r'l some areas. Waste .in'tensiffy Waé not includ.e_:d in the analyéié siﬁce the analysis |
W_és based on" p@ten_té, which are vlab scéle.proces's.els. iRec‘ycling» and reuse is not ‘typiéally
conducted dt_ fhe laborétéry scaie. If tﬁis study was conciucted at larger sca_lesl, the results
would Vary »signiﬁcantly, but there are some trends shown in these studies aﬁt the
léborato.ry scéle in fnaking the process greéner. ' |

+ There was a decreas;: in the mass intensity from the oﬁginal 1'982.patent. The

' prirria.ry reason is better microﬁe seleétio_n. In 1982, the typical fnicro‘biai yield was on
the order of 50 njilligrlams’[6..6].. In year 3, 1985, the amount of p;avastatin obtained from |

the‘process was ‘overl. 2060 milligrams ‘(2 gra.‘m.s)} for the same batch size. In 2004 there

4IWas a slight imprdizemént in which the total batch yiéld was' 16.5 grams for a batch,
which héd a Volﬁfﬁe of 10 L [54]. "Bac.k calculétion for cbiﬁparison ‘yield'ed. 3,3Q0

" milligrams fm” a2 L batch sizé. This is an improvement? but n;)t.as large an improvement
-as th¢ first fev'vv years. Thc seéond reason fqi‘ the tren'd would be al bétter und_erstaﬁding of .
the p'rocess and bettel; separation fechniques_ that were used.. . lThere were chanées over
the time period that inade- aided in obtaining m‘ofe_’ API from the .process. | This can be
seen iﬁ Figure 8. In ‘198'2", the chemicals Werelexl'viror_lmen-ta‘lly benigﬁ compérgd to the . -

other years, But ai large‘ ‘amount .Of .chemicalrs were ,uséd. ) Appgoximately half of the

decrease from the original patent was attributed to the yield increase. The second
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decrease in mass usage was aitributed to solvent substitution and other improvements. In
the 1983 data, the water decreased by a factor of three, the glucose decreased by a factor
of two, decreased the ethyl acetate used by a factor of two, and the research team
removed sodium sulfate. All of this was done while the yield increased by a factor of
twelve. In 1985, the water increased by 1.75 times the 1983 value, the amount of
intermediate decreased by 1/5 and the ethyl acetate and sodium chloride increased by a
factor of three. When the increased yield was taken into consideration, the water
decreased by a 2.63 times, and the ethyl acetate and sodium chloride decreased by a
factor of 1.33 times the 1983 value. These chemicals included mostly organic solvents,
which were soluble in water. In 2004 ethyl acetate was removed along with sodium
sulfate and' sodium bicarbonaté. This was because a liquid-liquid extraction was removed
from the process. Also in 2004 benzene was removed and replaced with acetone. These
solvents had different solubility limits for the drug and made the drug more easily

recovered.
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Figure 8: Mass Intensity for the Pravastatin Patents

Water intensity followed a similar pattern to that of the mass intensity. This is
because most of the mass that was used was water. The decrease in water intensity can
be attributed to a larger concentration of drug out of the process. Fermentation based
products use a large amount of water so any increase in yield would result in a

substantially lower water usage. This can be seen in Figure 9.
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Figure 9: Water Intensity for Pravastatin Patents

In terms of the water, there was a finite limit for the process, which is 1,000-kg/
kg of drug. For many microbial processes, there is a certain concentration of water that
is needed so that the microbes will grow. The yield attributed to 25% of the decrease in
the water usage for 1983 and 1985, and 80% in 2004. The other decrease in water usage
in 1983 was attributed to the removal of the lactonization step. Another reason for this
decrease was because microbe selection. A significant amount of water was used in the
fermentation broth and for the 1983 data; a lower amount of water was used. In 1983, the
processing was similar to the 1983 data and the same reasoning applied for the decrease
in water usage. In 2004, the yield only accounted for an 80% decrease in the water
intensity. The other decreases were attributed to the use of resin absorption in place of

liquid-liquid extraction and the removal of water from the wash steps.
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There was a large decrease in the solvent intensity, which can be seen in Figure
10. There was a point at which the decrease in solvent usage tapered off. This is mainly
attribute to the physical limitations of the chemistry involved and chemical separation
techniques used. The 1983 data decreased slightly more then the yield increase. The
reason for the decrease was the removal of a lactonization step in the process. The 1985
data point does follow the trend with respect to yield increase. The 2004 data point was
less then what was expected from the yield increase. The main reason for the large

decrease in the 2004 data was because of the removal of a liquid-liquid extraction step.
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Figure 10: Solvent Intensity of the Pravastatin Patents

Figure 11 shows the decrease in the amount of intermediate needed for each
process. Only one patent was analyzed for the manufacture of the intermediate. A

decrease in the amount of intermediate needed directly corresponded to a decrease in the
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life cycle materials, the total amount of materials needed to make pravastatin starting at
the most rudimentary chemicals, used to make pravastatin. Other processes to
manufacture intermediate were beyond the scope of this study. The main decrease in
intermediate usage was attributed to a yield increase. The yield increase was mainly
because of better microbe selection, but in the 2004 data, it was because of the recovery
techniques employed. In the 2004 data, resin absorption was used in place of liquid-

liquid extraction and very little waste streams were produced
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Figure 11: Amount of Intermediate Needed to Make Pravastatin
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The percentage decrease in the various parameters over the period of time was
also analyzed. This is shown in Figure 12. The largest increase occurred in the year

immediately following drug discovery.
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Figure 12: Percentage Decrease in Mass Criteria Using the Initial Patent as a Baseline
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Environmental Analysis

There are several environmental factors that were considered during the analysis.
These factors included inhalation, ingestion and aquatic toxicity, global warming
potential, smog formation, carcinogenicity and acidification. These factors aided in
determining which process was the most sustainable. The various toxicity factors along
with carcinogenicity illustrated the various degrees of exposure of a substance along with
the environmental harm caused by the substance. Global warming potential, smog
formation and acidification are gauges of global and regional environmental impacts
from the chemicals in the process. Eutrophication was not included in this analysis since
very little phosphates were used or produced.

For the inhalation toxicity category, the threshold limit values for the chemicals
were used. This was used to determine the potential environmental impact of each
process if there was a leak and the chemicals would be released into the air. Figure 13
shows the weighted inhalation tpxicity for each process lab-scale manufacturing process
for pravastatin. The intermediate process was included since this would drastically
decrease With respect to the various processes and there were hazardous chemicals
involved in the‘ intermediate process. The environmental criteria decreased in proportion

to Figure 11.
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Figure 13: Weighted Environmental Index Including the Intermediate Process

The vast majority of the environmental index was attributed to the use of the
intermediate. Removal of the intermediate process shows the “green progress” of the
pravastatin processes over time. This is shown in Figure 14. There was no correlation
between the environmental index and the year of the patent. This was because the
compounds in 1982 were relatively benign. The most toxic chemicals for inhalation in
1982 were ammonium nitrate that is not an extremely toxic chemical. In 1983, benzene
and ether were used in place of ethyl acetate. From 1983 to 1985, there was a large
decrease in the inhalation toxicity. 25% of the decrease from 1983 to 1985 was attributed

to by yield. Another decrease was because of the use of acetone in place of benzene.
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Figure 14: Weighted Environmental Index of the Pravastatin Patents Only

Figure 15 shows the weighted ingestion toxicity for only pravastatin process
patents. The end product is going to be ingested by people and there may be trace
amounts of the various processing chemicals trapped within the crystal structure and in
the final tabulated formulation. Again in 1982 the chemicals were relatively benign, but
there were a lot of chemicals used. In 1983, benzene and ether were used which are
extremely toxic. From 1983 to 1985 the use of benzene decreased by 85% and no ether
was used in the 1985 data. In 2004, no benzene or ether were used, but the value for the
ingestion toxicity is slightly higher when the increased yield was taken into
consideration. There are a few reasons fro the increased aquatic toxicity for 2004. The
first reason is because of the increased usage of methanol. Methanol is more toxic to
marine life then the compounds used in 1982. Another reason is the use of acids and

bases. In 1982, the acids and bases used were weak, such as sodium sulfate and sodium
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bicarbonate. In 2004 sodium hydroxide and hydrochloric acid were used in place of the
weak acids and bases. There was a trend in the weighted ingestion toxicity, which is
mainly due to the process becoming more efficient. There is also another reason why the
weighted ingestion toxicity decreased. Most of the chemicals involved, mainly benzene,

were decreased and eliminated from the most recent process patent.
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Figure 15: Weighted Ingestion Toxicity of the Pravastatin Patents Only

Figure 16 shows the weighted ingestion toxicity with the intermediate process
included. The trend for weighted ingestion toxicity is directly related to the increase in
yield for the pravastatin process. The ingestion toxicity can be found on MSDS sheets
from chemical suppliers like J.T. Baker or other references [62], [63]. Figure 16

followed the same trend as the intermediate graph, which is Figure 11.
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Figure 16: Weighted Ingestion Toxicity including the Process to Make the Intermediate

The first comparison for the weighted aquatic toxicity was made without the
intermediate process. This showed the decrease in aquatic toxicity over time with respect
to pravastatin. This can be seen in Figure 17. The decrease did not follow the same
pattern as the other environmental parameters. This was attributed to process
improvements, which directly impacted the yield. This is evident from drug discovery to
the first few years. The researchers increased the yield, but by using chemicals such as
benzene. Even though the use of extremely toxic chemicals increased, the aquatic
toxicity decreased because of the substantial increase in yield. Theoretically, the aquatic
toxicity should have dropped to 8% of the drug discovery value, but this was not the case
due to the use of more toxic chemicals. There was a trade off between yield and aquatic

toxicity. In 1983, the aquatic toxicity should be 4.39, but was 18.9. The increase in
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aquatic toxicity was attributed to the usage of benzene and ether in the 1983 data. In
1985, there was an increase in the yield, but also there was less benzene used and no
ether used. In the 2004 data, 25% of the decrease was attributed to the yield increase.
The other 75% of the decrease was attributed to because of two reasons. The first reason
was the removal of a liquid-liquid extraction step, which contributed significantly to the
aquatic toxicity.  The second reason was the use of ethyl acetate as a replacement

solvent in 2004 in place of other solvents.
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Figure 17: Aquatic Toxicity for the Pravastatin Patents

The analysis for aquatic toxicity was conducted with the intermediate processes
included. There was a large increase in the aquatic toxicity mainly attributed to hexane
and benzene. A significant amount of benzene and hexane were used to make

intermediate. The weighted aquatic toxicity when the intermediate process is included
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follows the same trend as Figure 11. This can be seen in the Figure 18. A major issue

within the intermediate patent is the use of hexane, which is extremely toxic to marine

life.
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Figure 18: Aquatic Toxicity with the Intermediate Process Included

The organic solvents used in the processing contributed the most to the global
warming potential [58]. The vast majority of the global warming potential can be
attributed to the process to make intermediate. The global warming potential for both
processes is shown in Figure 19. The weighted global warming potential follows the

same trend as the usage of intermediate.
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Figure 19: Weighted GWP for the Pravastatin with the Intermediate Included

The weighted global warming for the four-pravastatin patents was also compared
excluding the intermediate patent. This can be seen in Figure 20. The main reason for the
decrease is due to the increased conversion and yield. The second reason is due to
decreased solvent usage. The vast majority of the global warming potential was caused
by organic solvents used in the process. The energy related global warming potential
accounted for 4% of the total global warming potential in 1982 and 2004, and accounted
for approximately 1% in 1983 and 1985. In 1983, the yield improvement contributed to
88% of the decrease in global warming. There were other improvements in which the
solvent usage was decreased by 10%, which accounts for the other improvement in global
warming potential. In 1985 the improvement in the global warming potential was

entirely attributed to by the yield increase. In 2004, 81% of the global warming potential
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was attributed to by the yield increase. There was also a 24% decrease in solvent usage

when the yield was taken into consideration from 1982 to 2004.

617085

600000 +—

500000 {——

400000

300000

200000 |

1 00000 1T 46004

Weighted Global Warming Potential

4155

0 o
0 1 3
Year From Discovery

22

Figure 20: Weighted GWP for the manufacture of Pravastatin

For this process, no ozone depleting substances were used in the processing of

pravastatin directly. All of the compounds listed as ozone depleting chemicals are

chlorinated and brominated hydrocarbons. All of the patented processes do not contain

any halogenated hydrocarbons.

Figure 21 shows the weighted smog for both the intermediate and pravastatin

processes. There was a significant decrease in the photochemical smog formation after

drug discovery. In Figure 21, most of the smog can be attributed to the production of the
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intermediate. In the intermediate process, 98% of the photochemical smog formation was

attributed to hexane and ethyl acetate.
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Figure 21: Weighted Photochemical Smog Formation for Pravastatin and Intermediate

Figure 22 shows the decrease in photochemical smog formation from the
pravastatin patents. This portion of the analysis was needed to determine if the decrease
in photochemical smog formation was attributed to the efficiency or an actual “green”
improvement. The weighted smog formation is shown in Figure 22. In 1983, 88% of
the improvement in photochemical smog formation can be attributed to by a yield
increase. The other 11.2% was attributed to the decrease usage of solvents and the usage
of ether in place of ethyl acetate. In 1985, the yield contributed to all of the decrease in

smog formation. In 2004, the yield increase attributed 46% to the decrease in
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photochemical smog formation. Approximately 50% of the decrease in 2004 was

attributed to the use of methanol and acetone in place of ethyl acetate.
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Figure 22: Weighted Smog Formation for the Manufacture of Pravastatin Only

Carcinogenicity was also considered as a criterion. For this criterion, the
carcinogenicity was scaled on a factor of 0-5; 0 was non-carcinogenic and 5 was a known
carcinogen. An example would be 1000 kg of water, which is non-carcinogenic. Water
would have a scaled factor of 0. The mass was multiplied by ( 10°1) to give a scaled
carcinogenic score of 0. There was an exception, which was for the intermediate. For
this compound the carcinogenic score was calculated in a similar fashion. When the
intermediate was included in the pravastatin process, the sum of the carcinogenic score of

the intermediate process was used and multiplied by the mass of intermediate used in the
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process. Figure 23 shows the weighted carcinogenicity for the intermediate and

pravastatin processes. Figure 23 was similar to Figure 11.
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Figure 23: Weighted Carcinogenicity for the Intermediate and Pravastatin Combined Processes

Since there was a trend that seemed to follow the decrease in intermediate usage,
the carcinogenicity of only the pravastatin processes was investigated. Figure 24 shows
the carcinogenicity of the pravastatin process. This graph was prepared on a logarithmic
scale since there is a huge variation between the carcinogenicity for each year. The
weighted carcinogenicity actually increased for years 1 and 3 after drug discovery by a
factor of 7,500 for year 1, which corresponds to 1983 due to the use of benzene in the
process, but the weighted carcinogenicity decreased significantly in year 22, which

corresponds to 2004, which was attributed to removal of benzene from the process.
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Figure 24: Weighted Carcinogenicity of the Pravastatin Patents Only

The potential for acidification in the processes, was another metric that was used
for an environmental comparison. This analysis only included acids used or produced in
the direct processing of pravastatin and not the acidification due to the emissions related
to energy. The analysis of both the intermediate and pravastatin patents can be seen in
Figure 25. The graph followed the same trend as Figure 11, which is the intermediate

usage.
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Figure 25: Weighted ARP for the Intermediate and Pravastatin Processes

The acid rain potential (ARP) of the different lab-scale processes to make
pravastatin were compared. This was used to determine if there was a significant
decrease in the acid rain potential of the manufacture of the drugs. This can be seen in
Figure 26. The Between 1983 and 1985, the weighted acidification increased
significantly. The reason for the increase was due to the use of sodium hydrogen
carbonate. In 1983, year 1, no materials were used in the pravastatin patent that could

contribute to the acid rain potential. In 2004, a negligible amount of acids were used.
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Figure 26: Weighted ARP of the Pravastatin Patents Only

Chemical Tree Development

Resource depletion was another key issue that was considered with sustainable
drug development. This analysis portion was used to determine the resources used to
make the various compounds used during drug manufacture. This analysis was a further
aid in determining sustainable technologies and shows the broader impact on the
environment of green engineering improvements to the drug manufacturing process. The

diagrams on the next few pages show the chemical trees for each patent. The data
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obtained from these chemical trees can then be input into LCA software such as
SIMAPRO® so that a cradle to gate life cyc}e analysis can be obtained and coupled with
the gate to gate analysis which was conducted earlier. The chemical tree for the process
to make intermediate is given in Figure 27. [52],{65].

During construction of the chemical tree, there was a choice between renewable
and non-fenewable processes. The renewable pathway was used if over 50% of the
chemical was produced by a renewable route. A renewable route is defined as any
pathway in which the starting material is made by plants or animals in the eco-system.
An example of a renewable and non-renewable pathway is the manufacture of ethyl
acetate. Ethyl acetate is made by reacting ethanol with acetic acid with sulfuric acid as a;
catalyst [71]. The sulfuric acid is recycled in this process. Ethanol and acetic acid can be
made in a variety of ways. Ethanol made via a fermentation route is fairly common while
acetic acid is not traditionally made via fermehtation [71].  For this process, the
fermentation ethanol was chosen because 92% of the ethanol in the world is made via the

fermentation route. [71].
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From these chemical trch diagrams, a table was developed to determine the
resource depletion of each patent. Resource depletion for this analysis considers energy,
natural gas, and crude oil. Biomass, water, and naturally occurring minerals were not
considered since these resources will not run out in the foreseeable future. Energf was
found via the EIOLCA software for the processes [13]. Since the data was given in terms
of 1992 dollars, the inflation rate was adjusted to 2004 dollars for calculation of the
amount of fuel needed per million dollars. Petroleum refining and nitrogen and
phosphorous containing compounds were the most significant compared to the other
materials in terms of energy consumption. The other factors in terms of energy
consumption were insignificant compared to these larger energy usages. The
manufacture of lime for use as calcium carbonate used only 2.5% of the energy used in
the manufacture of the previous mentioned compounds. Oniy mﬁterials based on
petroleum, natural gas and nitrogen containing compounds were included in the energy
analysis. The masses of the materials from each patent were applied to this data. The

life cycle energy requirements are given in Table 11.
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Table 11: Energy Resource Depletion

Patent KJ/kg Kg of fuel oil #2 depleted/kg API
Intermediate (1976) 18793638.6 438.9
Pravastatin (1982) 16985058.3 386.7
Pravastatin (1983) 1302044.64 304
Pravastatin {1985) 477479.36 111
Pravastatin (2004) 114300.418 _ 27

The resource depletion due to energy was insignificant as compared to the mass
of materials used. The total resource depletion can be seen-in Table 12. Most of the
resource depletion was attributed to the solvents, which were used in the process. There
are other issues involved with the solvents, which cannot be answered at this time. These
issues include the final disposal of the solvents.

The pharmaceutical industry has a limited range of disposal options for spént
solvents. This analysis assumed that the waste generated was incinerated and no work
was obtained from these solvents and other materia];. In many cases, this may not be the
case and the solvents may sérve another purpose. Possible alternative soivent disposal
routes iﬁciude; use as fuel, in-process recycling, off-site recovery, spent solvents sold to
another company, or possibly used as a generic solvent in paint. If any of these situations.
are the case, the resource depletion due to these processes will decrease since the solvents

would be directly substituted for “new” solvents in alternative disposal routes
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Table 12: Total Resource Depletion

Total Resource Depletion (kg/fkg API)

Patent
Intermediate {19786) 60023
Pravastatin (1982) 45941
Pravastatin {1983) 4446
Pravastatin (1985) 1429
Pravastatin (2004) 350
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‘Chapter 4: Scale up of a active pharmaceutical ingredient
‘Batch comparison |

A secondary analys1s was conducted on the scale up of a product ‘that was
produced through orgamc synthes1s’ A comparlson of the lab scale glass and p1lot plant E
batches was conducted The: glass plant 1s sl1ghtly smaller than the pllot plant and is used |
.. .for an mtermechate amount of matenal F or example a p1lot run may produce 100 300
- kg of API product and the glass plant batch rnay be- 10% of thlS value ThlS companson
used mass.and e_nergy balance factors, fugltrve em1ssrons_, the c_hem1stry of the react1on(s)
and envlronmental criteriaas met:r’ic_s.A-Thesecritical_.factors: ivere’used ‘.to‘ detemnne the |
- process greenneSS ofa pharmaceutical product :The tlotv sheets \vere found from patent.. .
l1terature at the lab scale and detalled process ﬂow sheets prov1ded by antol-Myers
iSqu1bb of the batch manufactunng for the glass and p1lot scales [71] Durmg the
V productlon in the prlot plant batch srde-product was formed 1nstead of an 1nterrned1ate _
: Th1s accounted for approx1mately 9% of lost y1eld Instead of a large increase due to the’
formatmn_ ofa by-produc_t, most of the. metrics strl_l decrease,d.v ' N
L For all of the process'rnetri'c‘sthere was a large :decr_ealse 'ﬁ'om the lab-'s_calevto :
' glass 'scale production' 'and.a sligh't' decrease."from the glass to ipil‘ot :sc’ale ' This decrease ’
| from the lab to glass scale was attnbuted to equ1pment subst1tut10n The 1mprovements: .
' from the glass plant to pllot plant were attrlbuted to an 1ncreasel in the yreld a decrease in
| solvent and water usage, and solvent substltut1on | B

F1gure 32 shows the matenal (mass) mtensrty cnterla for three dlfferent

‘ productron scales The total mass 1ntens1ty decreased as the batch size mcreased in the
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overall batch processing. Table 13 shows the percentage of the three scales. There was a
29% relative yield ipcrease from the glass to pilot plant batches. This accounted for most
of the decrease in the criterion from the glass to piloit plant batches. Theoretically, the
mass intensity should have decreased by 29% from the glass to pilot plant because of the
29% relative yie;,ld increase. The total decrease in mass intensity was 30.4%. The other
1.4% relative decrease was attributed to less solvent and water usage along with a
decreased amount of processing steps. A major reason for the high mass intensity for the
laboratory scale was the use of HPLC as a separation method and the use of ethy} acetate
as another separation method. This method was substituted for liquid-liquid extraction
and crystallization. The decrease in the mass intensity form the glass plant to the pilot
plant was attributed to an increased yield in the pilot plant. There was a small slight
decrease in the mass iﬁtensity not attributed to the increased yield, but attributed to the

substitution of solvents along with a slight decrease in water usage.

Table 13: Relative Mass Intensity of Three Scales

Lab . 100.00%
Glass 7.36%
Pilot 512%
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Figure 32: Relative Mass Intensity of Three Scales

Figure 33 shows the water intensity criteria for three batch sizes. Table 14 shows
the relative percentage for the water intensity of the three batch scales.  The large
amount of water in the lab scale was attributed to the use of HPLC. This contributed
significantly to the mass intensity for the lab scale. There was a decrease from the glass
scale to the pilot scale not attributed to by the yield increase from the glass to pilot scale.
Theoretically, the water should have decreased by 29% from the glass to pilot plant

because of the yield increase. The total decrease was 29%.
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Table 14: Relative Percentage of Water Intensity in the Lab, Glass and Pilot Batches

Lab 100%
Glass 7.3%
Pilot 51%
o
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100.0% 1 |
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80.0% | |
, 70.0% -
()
T 60.0% |
(7]
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20.0%
0,
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0.0% |
Lab Glass Pilot ‘
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| ]

Figure 33: Relative Percentage of Water Intensity in the Lab, Glass and Pilot Batches

Figure 34 shows the waste intensity criteria for the different batch sizes. Table
15 shows the relative percentage of the three scales. There was a large difference in the
equipment used at the laboratory scale than the other two scales. The lab scale equipment
focused on obtaining a “high purity” product for initial tests at a large cost for solvents
and water. Theoretically, the waste should have decreased by 29% from the glass to pilot
plant, but decreased by 30.46%. This is the same as the mass intensity since no solvents

or water are recycled or recovered from these scales.
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Table 15: Relative Percentage of Waste Intensity in the Lab, Glass and Pilot Batches

Lab 100%

Glass 7.29%

Pilot 5.07%
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Figure 34: Relative Percentage of Waste Intensity in the Lab, Glass and Pilot Batches

Figure 35 shows the solvent intensity percentage for the three batch sizes. Table
16 shows the relative percentage of the solvent intensity for the three scales. The lab
scale equipment focused on obtaining a “high purity” product for initial tests at a large
cost for solvents and water. In the lab scale the solvent intensity was extremely high
because of the excessive use of HPLC for purification purposes. In another step, in a
purification process, excessive amounts of ethyl acetate were used to purify the product.
This method was not used in either the glass or pilot plants. With the solvent intensity,
from the glass to pilot plant, there was a 45.7% decrease in solvent usage. There are two

factors that contributed to the decreased usage of solvents. The first is the increased yield
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that resulted in the pilot plant. There was a 16.8%, which was not accounted for because
of the yield. This was attributed to a few causes. The first cause for the large decrease
was the because of two steps in the processing. In one step, a reaction was removed from
the process. In another step, the amount of acetonitrile used was decreased by a factor of
2.25. The toluene was substituted for half the amount of ethyl acetate. A small

percentage of acetone was also used.

Table 16: Relative Percentage of Solvent Intensity in the Lab, Glass and Pilot Batches

Lab 100%
Glass 6%
Pilot 3%
| 100%

% of Lab
Scale

6%

Lab Glass Pilot
Scale

Figure 35: Relative Percentage of Solvent Intensity in the Lab, Glass and Pilot Batches

The energy required for the three batches was also compared. These factors were
estimated using engineering heuristics and the flow sheets obtained from each batch.

For these estimates, no heat lose was assumed for the heating or cooling in all the
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processes. The use of the heuristics and any assumptions concerning heat loss would
decrease as the scale increase since heat loss is a function of surface area.

The processing conditions for this pharmaceutical product are those typically
found in other pharmaceutical products. The comparison of the energy can bz; seen in
Figure 36 and in Table 17." The pumping energy was found to be negligible for this
process while the heating and cooling were the most significant energy consumers in the
processes. Table 17 and Figure 36 are given for energy related emissions, but could also
be used for the energy used in the various process stages. All three of these processes did
not have a lot of energy associated with them. In the lab scale there was a lot of heating
and not much cooling. It was not uncommon to find temperature raise by 50 degrees in
many of the steps at the laboratory scale. In the glass and pilot scales the temperatures
were kept close to ambient temperature in pressure with temperature differences of 20
degrees, but in both the glass and pilot plants there was heating and cooling occurring,
many times ih the same vessel. Some of this heating and cooling involved heating and
cooling vessels, which contained salt solutions that did not occur at the lab scale. Wheri
the increased yield was taken into consideration, the energy usage increased slightly. The
incfeased energy usage was attributed to the substitution of water in place of solvents and

also the heating and cooling of salt solutions.

Table 17: Relative Percentage of Lab-Scale Energy Related Emissions

Lab 100%
Glass 84.82%
Pilot : 80.41%
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Figure 36: Relative Percentage of Lab-Scale Energy Related Emissions

A comparison of the fugitive emission was also made. These emissions are
negligible compared to the waste intensity in the material intensities graph. The fugitive
emissions tended to follow the mass intensity. This can be seen in Table 18 and Figure

3

Table 18: Relative Percentage of Fugitive Related Emissions for 3 Different Batch Sizes

Lab 100%
Glass 7.35%
Pilot 4.83%
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Figure 37: Relative Percentage of Fugitive Related Emissions for 3 Different Batch Sizes
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Environmental Criteria

" The environmental factors were also considered.‘ For these environmental criteria,
all of ‘theinformation was given 1nthe pilot scale and the glass scale, but not for the lab- |
“scale batch, -‘which was obtained“ frorn- a patent :[71«]; To make_-a Valld-cornparison,' the
side reactions yvere not.'included for this.analysis since the ‘sivde ‘reactions for the patent
: .werenot known. ' | |
Most of the factors decreased in their env1ronrnental 1mpact category except the
aquatlc tox1c1ty The increase in aquatrc tox1c1ty was caused by the use of- solvents that - .
\yere more toxic to aquatlc spec1es From the glass plant to. pllot plant batch there was a
. sol-y'ent replacement, in which double the amount of heptane was used' as a-replac_ement ’
: for an butyl ace'tate; | Heptane 'is' many times'more toxic to if.'lsh, but'the’ ingest_ion toxiclty |
. was two times less toxrc than the butyl acetate . | | 4 | B , |
Flgure 38 shows the Welghted lnhalatlon tox1c1ty graph ‘For' | the Weighted"”f '
1nhalat10n toxrcrty, desplte hav1ng certaln process controls in place such as scrubbers the n
-relatlye percentage st111 decreased from the lab scale. . The percentage decrease from the
_:lab-scale to the glass scale was’ 70% The percentage decreased from. the lab scale to'the -
| g pl-lot scale ‘was 32%., ';Therel, were two reasons for the i 1ncrease from the glass ‘plant to_ the ,
p_ilot plant. The increase froimthe"‘ glass plant to the pilot plant Was"‘attributed»to the
increase usage"of a reactant in the. ﬁrststep lof the procesS. The se’cond reason for the
' ..increase from .th'e glass to‘plilot plant batches was .a_ttributed to anﬂ_increased-usage of a |
; reage_nt in the vpr»ocess." The reagent in ques_tion has a Very low TLV and 3 times more of

the speciﬁc chemical was us’ed in the pilot scale batch. If the side reactions are included -
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in this process, the glass plant had a substantially higher percentage than both the lab

scale and pilot plant values.

Value

% of Lab-

Lab Glass Pilot
Scale &

Figure 38: Relative Inhalation Toxicity for the Lab, Glass and Pilot batches

The weighted ingestion toxicity was calculated by converting LDs to a unitless
kg/kg value. Figure 39 shows the weighted ingestion toxicity graph. The ingestion
toxicity decreased as the scale increased. The reason why the lab scale was extremely
high was because of two reasons. The first reason was because of excessive chemical
usage. The second reason for the large number for the ingestion toxicity was the use of
acetonitrile. Acetonitrile is a compound that can cause cyanide poisoning and was used
in excessive amounts for purification techniques in the lab scale. The excessive use of
this chemical was changed in the glass and pilot plants. Instead of using HPLC which
used the acetonitrile, liquid-liquid extraction was used more often which are considered
“food grade”. These chemicals included heptane, ethyl acetate, and butyl acetate. The

decrease for the pilot plant was 39.04% while the yield increase was 29% from the glass
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plant value. There were two factors that increased this effect; the first was a usage of
more environmentally benign solvents, such as acetone and various acetates, but was
countered with the increased usage of the toxic reagent, which is a proprietary compound.
The second portion was the decreased use of butyl acetate in the last step of the process.
Some butyl acetate was replaced with heptane in the process. Butyl acetate is not a

toxic chemical, but heptane is even less toxic when ingested.

i 100%

% of Lab Value
W
o
X

10.30% 6.28%

Lab Glass Pilot |
4 Scale l

Figure 39: Relative Ingestion Toxicity for the Lab, Glass Plant and Pilot Plant scales
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Figure 40 shows the weighted aquatic toxicity graph. The aquatic toxicity
increased caused by a change in solvents. In the lab scale, a lot of substances were used,
but these chemicals were relatively non-toxic to aquatic life. These chemicals include
water, acetonitrile, and salts. There are mixed results for the glass and pilot scales. In the
first step for the glass plant, toluene was used which is more toxic then the other
compounds. The other steps for the pilot plant had more substances that were toxic to
aquatic species. These substances included the use of acetonitrile in place of methanol
and acetone and the replacement of butyl acetate with heptane. The increased usage of
heptane and the decreased usage of butyl acetate caused the increase in aquatic toxicity.
There was a trade off between the environmental criteria and the mass criteria. This is
because of the properties of the drug itself, most organic drugs are more soluble in
organic phases and this drug is not an exception. To lower the mass intensity and volume

of the reactors, the aquatic toxicity was sacrificed.
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Figure 40: Relative Aquatic Toxicity as a Percentage of the Lab-Scale Value
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The global warming potential was also analyzed. This can be seen in Figure 41.
This effect was a combination of the volatile organic compounds and various other
compounds that contributed to global warming. There was a reduction from the lab-scale
to the glass scale batch. The value for the global warming potential stayed approximately
the same for the glass and batch scale batches. The global warming potential should have
decreased because of the increased yield, but this was not the case. The reason for the
increase was that every solvent was given the same global warming potential, so any

increase in solvent usage would increase the global warming potential.

g 100% -
|

90% |
‘ 80% | \
1 70% 4—— S~ \
|

60% |
| § s )
| =& 50% -
. E>
CR=T 409 |

30% - %
! 20% |
f 10% - 2.66% 2.89%
1 0%
3 Lab Glass Pilot

Scale |

Figure 41: Relative Global Warming Potential as a Percentage of the Lab Scale Value

The weighted photochemical smog formation was also analyzed for these three
batches. There was a large decrease from the lab to the glass scale, which was due to the
substitution of water in place of solvents along with decreased solvent usage. In the lab

scale, a significant portion of the photochemical smog formation was attributed to the
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ethyl acetate used in one of the steps for purification in the process and also to
acetonitrile that was used in the HPLC for purification. There was a slight increase in the
photochemical smog formation from the glass to pilot plant scale despite decreased
solvent usage. This occurred for the same reason as the aquatic toxicity. The only reason
why there was an increase from the glass plant to pilot plant scale was because of the use
of heptane in the last step in the process. Heptane is a relatively persistent chemical and
contributes significantly to smog formation. The value for heptane is 0.77 while the

value for butyl acetate, the chemical in which it was substituted for has a value of 0.51.

[58]
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Figure 42: Relative Photochemical Smog Formation as a Percentage of the Lab Scale Value

An analysis for carcinogenicity was also prepared. This was conducted on a scale
of 0-5 with the number 5 denoting a proven carcinogen to humans. The scale of 0 would
denote that the substance was proven to be non-carcinogenic to humans. Some

substances in the 0 category include water and ethanol. A category 2 would be a possible
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human carcinogen, a substance in category 3 would be potentially carcinogenic based on
animal tests, and a substance in the fourth category would be potentially a carcinogenic
based on limited human data. - The equation used for carcinogenicity can be seen in

Equation 1.

Equation 1

Carcinogericity = Mass* (10°ssiedion mmber _ 1y

This was a simple method to estimate the carcinogenicity of all the compounds
without making extreme assumptions. An example of the logic of this method was with
benzene and toluene, which are 5 and 3 respectively. Using this method, benzene was
100 times more carcinogenic than toluene. Figure 43 shows the carcinogenicity for the
three batch scales. |

In the laboratory scale, there was low yield and some substances were used which
had high potentials to cause cancer. These substances include dichloromethane, toluene,
formaldehyde, and DMF. All of these substances were removed for the glass plant.
There was an improvement from the glass plant to-the pilot plant that was not based on

yield improvement. This was the removal of THF from one of the steps.
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Figure 43: Relative Carcinogenicity as a Percentage of the Lab Scale Value

A graph for the weighted acidification was also prepared. This was the amount of
acid producing compounds that are released such as sulfuric acid, carbonic acid, and
hydrochloric acid. In general, there was a decrease in the acid rain potential for the
processes from the input materials. There was not as large of a drop between the lab-
scale and the glass-batch scale mainly due to the pieces of processing equipment that
were added for safety reasons. In the laboratory scale, hydrochloric acid was used in
one of the steps. In both the glass plant and pilot plant very little hydrochloric acid was
used. In both the glass and pilot scales phosphoric and sulfuric acids were used. The
sulfuric acid was not present in the laboratory scale because this chemical was part of a
process control within a step in the process. There was a slight difference in the

acidification between the glass plant and the pilot plant. This was attributed to an
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increased yield and the telescoping of one reaction step. The decrease can be seen in

Figure 44.
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Figure 44: ARP as a Percentage of the Lab Scale Value

120



Chapter S: Solvent Selection Guide
There was a need for a qu1ck method to deternune the various’ env1ronmental
| factors that are related to solvent selectlon Prev1ous methods to detenmne the most.
efficient solvent for a speei‘ﬁc process took into consideration variOus fa'ctors. These :
.considevratlons’ in‘cluvde'd.basic engineeﬁné, economics, chemistry (Aprinciples,‘and safet_y'
concerns,-Wh‘ichfare typieallv ithe pr1mary conc_erns for solvent s‘eleeti_on,. "This table
provides guidance Ifor selec'ted.‘-s'(')lvents from an 1e'nVironment.al ’perspeetive.' The‘:.v
-env1ronmenta1 categones are typ1cally secondaryicon31derat1on for solvent usagevm -the '
pharmaceut1cal mdustry There are a large number of databases and 1nfonnat1on :
»avaﬂable for the vanous env1ronmental criteria, but most of thls 1nformat10n 1s ot read1ly
'avallable for comparlson The user has to seareh for the data and re- enter the data mto a
spreadsheet 1f a companson of two solvents is desxred “This data is avallable from' '
MSDS sheets, the EPISUITE software package SOLV-DB and the metrics. developed by‘
IChemE [58] [72] [73], [74]
A simple excel spreadsheet was developed whlch 1nc1udes 1nhalat10n tox1c1ty,- .
, mgestlon tox101ty, aquat1c tox1c1ty, ozone deplet1on smog formatlon global warmmg
potent1a1 carc1nogemc1ty and. ac1d1ﬁcat10n for 39 typ1ca1 solvents | The envlronrnental |
' metrics used for this solvent sel_ectlon“ gulde take lnto.ac‘_count safety'and liab.ili'ty.‘ -
| This solvent’ seleoll%on. guide is differ'ent'fmm "previous solvent’ seleetion guide
because it takes 1nto account parameters whlch were not prev1ously. cons1dered in other:'

~ solvents select1on 'tables Tlus table also prov1des the user w1th raw data so-a d1rect '
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. comparison can be made very quickly to determine if any process improvements were .

made in the env1ronmental categories

Another advantage to tlns solvents selection gu1de is that the data can be -

| expanded to include solvents Wthh are proprietary or have been newly developed F or
this data a person usmg | a proprietary solvent only has to enter the data 1nto the
» ~spreadsheet for the compound This allows the: user ‘10 compare the solvent to the other‘ .
‘ solvents in the .spreadsheet. The data for therri propnetary solvent can be found _orr the .
material safety data sheets for the solvent..’ ‘The other environmental param'eters‘can be -
- found by estimation using similar compounds as reference sources. | o

Tli_ere has been previous efforts in the ~-development of solvent selection tables i.
Mostiof these guides were in the form of 1ogic§tree .program’s that determined the best i
solvents from a set list of parameters. : Most of these methods take. into account '
processrng, solubihty, regulatory, and’ health Aparameters but were not easy‘to use in
terms of user interfaces and learmng curves and were used prlmarily for initial process
development. . |

A program developed byl'the EPA called the Green Chemistry Expert System.; :
and contains 649 chemicals’an'dihas ‘many of the physical properties listed, 'hut doesj not
list any toxicologic‘al information [75]. : Also a.‘direct 'comparison'vis not available.
- Therefore, a pen and paper method is still needed ifa companson is desired.

The EPA also released the Solvents Alternatives Guide (SAGE) which is used for E
cleamng processes for equlpment [76] Th1s method works well for its 1ntended purpose, |

but does not translate well to solvent selectlon for pharmaceut1cal processes
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There is also another solvent selection gtﬁde By Curzons et al., which accounts for
a few environmental factors ,:[77]._ This guide takes~into account various environmental
parameter‘s such as bioconceﬁtfaiﬁbn, inhalation toxicity, aquatic toxicity, and water
solubility. This .guide,laqks‘ a feature to account fog ,tl;e\ mass of the solveﬁt used. -

Gani et al. propoéed another method for_ solvent selection [78]. This method
proposed a se_ries of rules for solvent selection and Auvsed a point éysfem to “score”
different solvent alternatives. This ﬁ_sed Qarioﬂs physical parameters and lumped all the’
‘ environmental parameters into oﬁe category. This approach is methodical, but is time
.consuming. | | |

There are life cycle assessment packages that 4take vaﬁous solvents into
. consideration, but these take a relatively long time to set up for‘.a simple comparison. A
second disadVantage to life C};cl_e assessment babkages is .that most of the éolveﬁts are not
listed. “This severely limits the effectiven’ess' of the 1ife cycle séftWa;e for solven‘_c
sélectibn. If an analyst désirés a more accurate comparison of .the' solventé using a lifé
cycle asséss_ment software package, the analyst must deﬁhe the specific solvent in the
program. This isa time. consuming and reéearch intensive.

All of these programs have a spebiﬁed list of so}vents fhat cannof be changed.
The only.method that takes into account mass is the lifé cycle assessment packages,
which are inconvenient to use and reqﬁire thé user to learn a vnew software progfam ora
. new type of interface. The other programs cahnot be (.;hanged, and in some cases, are not.

available to the average user.
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Metrics Used

Inhalation toxrcrty was chosen to represent. the airborne health hazards assocrated
with each chemlcal This metric is considered in hazard and operability studies HAZOP
and is c0n51dered a local to regional issue dependmg on the hazard and amount released
The values used for this analy51s are the perm1551ble .exposure limlt or the threshold llmltj.)
value of the chemical. This critenon is often consrdered for worker safety, but can “also :
affect most terrestrial species out31de of the plant boundartesiif there is an acmdental
: release There are other factors that were not cons1dered w1th the - 1nhalat10n tox1c1ty _
Wl’llCh include dispersion inodels and the atmosphenc half llfe of each chemical.
Dispersion models were not 1ncluded since every manufactunng plant will have a unique |
geographical -position. and the‘ atrnospheric half-life was unavailal)le- for a few of the -
‘chemical species. . .

Car'cinoge'nicity was another category; which was considered- as a nietric.- This -
rnetric is typically considered along w1th inhalation .t()'xicity for ‘i)\}orker safety in a
»HA‘ZOP» re’port; - Carcinogenicity is typically- considered to be a local environmental
metric, hut can ’be considered regional 'depending‘ on the siZe; exterit of a.spill' and
exposure method. l'he carcinogenic value can be found on any MSDS jsheet and 1s given
for all chemicals. " There are other SOurces," which only'jha\./e' a small number of chemicals
listed. These sources were not used since there was missing datai The carcinogenieity '
was- scaled on a factor .of‘_ 0-5.‘A‘ chemical with a value vof' 0 was de_notedj'as non.l -
carcin(‘)genic and a chemical with a i/alue of 5 Was‘denoted as al{nown'carcinogen; ThlS v
~can be seen iniEquation 2 R

Equatlon 2 .
Carcznogenczty Mass *(1 0“"""d vahe 1),
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An example ‘w(.)uld be 1000 kg of water, fwhivch 1s non-carcinogehic. Waf[er has g.b
| scaléd factor of 0.  The mass was multiplied by (IOOjl) to give a scaled caréinogenic
score of 0. Carcin(jgeﬁiciféy is iléed.ais::sppj;ic;mengc‘ail:ihf@rmation for inhalatioﬁ, ingestion
and aquatic toxicity. 1 . | |
Ingestion thicity was chosén_to represent the impact thét-the éhcmical can have: A
" on species tilat inges£$ tﬁé sélvent’. _This als‘o"re'prescnts the potelgitial ‘imp:act on terrestrial
..life if there is a liquid‘spill (_)r’ if the vapdr precipitates vou‘t-.o.f- the atmosphere.’ ThlS metric
is ponéidered'a local to regional issue dépéndent on the‘hazar'd and amount relee;$¢d.. . The
LDs, the lethal dose to kill 50% of a g’iveh populatioﬁ, was chosen for rats to reéresent-
typicél ingesti(‘)nv t;)xicity for the_ solvent "fori mamrﬁalian species. 'Ra_ts'_wer_e used to .
 represent mémniali;m ingestion toxicity because toxicological studies aré typically
conducted on rats or mice. There.are some concerns with this daf[? sﬁeéiﬁcaliy w1th the.
: alkane gr_oﬁpS’. Rats éan drink 1.2%_ of their weight ir;' hexane, 2;5%' of fheir wcight‘ in
h‘éptané, and fhere is nb'limit to oé@e énd highér alkaries, "withouti surpassiﬁg.thé LCsp
for this species. Care shbuld bev taken when comparing tﬁe alkane gfoups to qfhef groups
because of the resistance of rats to the alkangsl- | o

‘lquuatic toxicity v;ras used to determine the imﬁa’ct of the solvent éssociated mth '
environmental impéct .to marine life. This métric is -cons‘ideréd é_ldqal_to regional issue
dependent on the hazard, av\mpunt‘rel‘eésed, previous conCehtration in the‘watevr,‘th'e size of -

_ the wateif source, and the arhouqt of other wéter éources affected. T hev- LC50 for ﬁesh&atér
fish over 14 days w.;;ls used for the.cdmpafative measurémént’.— >Thi’s is a typical metric '
| uséd to 'fepreséﬁt aquatic toxicity. : A_quatié t(_ixi‘c'ityv -_acéoun't"ed for any | éccidentél

discharges into lakes or streams and the resulting ecological impact.
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| Acid rain potential was énether metric that typically has a-re’gionaln impact. Th1s

is the,potential for a cquipound to l.eu‘tfer"the pH of rain. Typ.icaH:y solventsb do not
contribute" to the acid rain potential unlesvs' the sqlverlts.are orciered to carbon dioxide vizt
a noh—bioldgicalw route.; It was assumed fdri__this' 4ar‘1alA}ifsis_»that the solvents wduld be
"recycled, biol’ogically treated or used fdr another v'purpos:e in_stéad of .vb.eing' incinera_ted,
which is typically the case.r If the user etrose to account ‘_fc')r the combustion of 'the
solvent,‘ the ARP can ‘b'e modiﬁed by‘ﬁndi‘ng the_ emourrt qf 4802, C02,~NQ and NO,
~ released by the eornbustiorr ot the selv_eht: I |

There was a metric for used to gauge photochemical smog formation. Typiealty
organic solverrts tend to react and form smog in the lower atm_osphere, which ca;n‘cause
harm to terrestriel species. Smog .formation can either'vbe ‘d locdl or regionali issue
dependent on the amount of chemicals released. |

Ozone de‘pyletibonk and global warming. potential are factors _tlrat have globdl '
“environmental impacts. Ozone depletiqrr .is' a measure of how the solvent will react and
destroy ozdne.in the upper atmosp‘here.‘ Most df the s_dltzents donot eon_tribute tolozc_)ne ’
depletic')n,'exucept compounds that-cc')ntaiu halbgenated groupsa | The other metric is glebal »
‘warming potential.- This metric was ‘the‘serne for allll_the sdlvents si_’nce a generic 'Value‘is g
given for \rolatrle organic compounds and ail of vthe solvents_ besides water are. orgénic‘ .
kcomp‘ounds_. The gto'bal ‘wurming' potential- is‘ét dir‘e’ct function Qf the .m‘ass of selvent
used. These*tvtfo metncscan be_used to ,edndpare the glebal envirdnmerltal irrriaatc_t-_of l'
different sol\(erlts.. ‘Th'e list ef th‘e. verious solvents _aVaﬂable foreorriparisorl are shown in

CTable19.



Table 19: Solvents in Spreadsheet

Acetic Acid Dimethy! Acetamide Isopropy| Ether
Acetic Anhydride 1,4-Dioxane Methanol
Acetonitrile Ethanol - Methyl Cellosolve
Acetone Ethyl Bromide Methylene Chioride
Amy! Acetate Ethyl Acetate ) Methyl Ethyl Ketone
Benzene Ethyl Ether ‘ Methyl Forma‘te
1-Butanol/n-butanol Formaldehyde Methyl Isobutyl Ketone
2-Butanol/sec-Butanol Formamide Pyridine
Buty! Acetate n-Heptane Tetrahydrofuran
Carbon Tetrachloride n-Hexane ’ Toluene
Chloroform Isobutanol/isobutyl alcohol Trichloroethane
o-Dichlorobenzene Isopropanol Water
Diethylamine Isopropyl Acetate Xylene

For the inhalation toxicity, ingestion toxicity, and aquatic toxicity, a higher value
denotes a less toxic material. For these three criteria the inverse toxicity value of the
chemical was used to represent that a more toxic substance is more harmful.  The other
environmental values were obtained from the IChemE [58]. Some data was unavailable
since some of these solvents are not used to a large degree. This data may be obtained in
the future or the category can be neglected for the comparison.

A simple spreadsheet was set up with the solvents and the various environmental
metrics. The enly information the user needs to enter into the spreadsheet is the mass of
material being used and the spreadsheet will calculate the various environmental
parameters. These values can then be compared to other value obtained for other
compounds. The full table is given in Table 20. The user can also further adjust the

impact of each category by including a weighting factor. This is dependent on the
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concern for each category and for a specific location. An example of when the
environmental parameters could be adjusted is when a plant is located in the middle of a
desert. The aquatic toxicity would be of very little concern since there are no outside

water sources close to the plant.

Table 20: Environmental Solvent Selection Table
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Example of Solvent Selection

An example of the application of this solvent selection table for the environmental
criteria would be if a scientist or engineer narrowed down the desired properties to three
viable solvents. For this example case, the projected amount of solvents needed would be
either 100 kg of benzene, 200 kg of acetone or 150 kg of n-hexane. The results for this

analysis are shown on the next page in Table 21.

Table 21: Results of Solvent Selection Table for the Example Compounds

Mass Used
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These results can be compared to one another either by direct comparison or by
converting every metric to a percentage to find the net increase or decrease if solvent
substitution is considered. The results from the table show that in terms of inhalation,
toxicity, ingestion toxicity, aquatic toxicity, and carcinogenicity that acetone has the least
impact, while benzene has the least impact in terms of smog and global warming, but the

largest impact in terms of carcinogenicity.
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Chapter 6: Conclusions

Green Analysis of a lab-scale fermentation based API

From a review of the various patents of the drug pravastatin, there was a
significant decrease in the water, energy, and solvent usage as time progressed. There
was also a decrease in the environmental categories. This was attributed to the process
becoming more efficient. It was also found that the largest contributor of all of these
categories was the process to make the intermediate. The intermediate process used
significantly more energy, water, and solvents than the all of the pravastatin processes.
The trends that each of the graphs followed were related to a form exponential decay,
which indicated that there will be a minimum value to each trend which means that the
value will never reach zero or be a perfectly sustainable process.

Decreasing the material usage in a process is an important green engineering
dbjective and can be accomplished in two different methods. Direct process
improvements are one way to decrease the material and energy usage. This was
investigated in this paper. The second method of decreasing mass usage is by increasing
the conversion and yield of the intermediate. This was apparent in the analysis since less
intermediate was needed as the years progressed.

For this process the use of the Best Practical Environmental Option (BPEO)
would be a disadvantage and result in a process, which would do more harm to the
environment. Fof this specific example, it was not the process to make the drug that was
a large concern, but the manufacture of the intermediate which was the concern. In 1982,

the substances that were used in the process to make pravastatin were relatively benign,
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but there were a lot of chemi,cals used and a great deal of waste was produced. Also a
great deal of intermediate was used. In the next few years, the primary focus was on
increasing the yield of the product. This resulted in the lower criteria for the entire life
cycle of the product, but a higher numbers for some of the criteria for 1983 and 1985.

It was also found that there is a direct relationship between intermediate usage
and energy usage. Most of the energy usage in all of the i)rocess came directly from the
mixers and the reverse osmosis systems to make pure water. Resource depletion from
energy contributed small fraction to the total material depleted. The emission attributed
by energy decreasgd by a factor of over 100 in the 22-year span of the four patents for
this analysis.

The trend for the environmental categories were analyzed for the pravastatin
process. Inclusion of the intermediate process in the environmental categories would
have trivialized the decrease in the environmental categories.

For ‘the environmental index and carcinogenicity solely for the pravastatin patents,
no trend could be found to fit the four patents. This was due to the usage of benzene in
1983 and 1985 patents. There was a decreasing trend for the environmental index when
1983 value is removed, but the 1985 and the 2004 values could potential be with the
same confidence limit.

For this study it can be concluded that the BPEO is not the best approach to use.
For this specific drug, it was better to increase the yield by using hazardous solvents

because in the total life cycle the use of hazardous solvents would decrease.
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Scale up of a active pharmaceutical ingredient

The scale up of another pharmaceutical product offers another perspective on the
pharmaceutical industry. There are a few considerations that were taken into account for
the scale up. The first consideration is purity. There was a large concern about purity for
this drug so many environmental solutions could not be used. The secoﬁd consideration
waé yield. The greater the yield, the better the process to some degree. It was found for
this process that yield improvement and high yields do not directly correlate to a green
process since the lab scale had 100% yield in the last step; but used a substantial amount
of solvents and energy to maintain this yield. The third consideration for this scale up
was lowering the volume of the reactors, which had mixed results for the processes.

The lab scale production maintained an extremely high purity drug and had an
extremely large yield for the last step. There was a cost for this yield though.- The cost
for the yield was excessive use of water and another solvent in a certain piece of
equipment. When this factor was taken into consideration and compared to the glass
plant and the pilot plant, the use of this specific piece of equipment was not worth the
amount of product recovered from either an economic or an environmental perspective.
For the last step in the lab scale, it would cost more money to recover{the API than the
API is worth.

There were décreases in most of the environmental factors as the scale of the
process increased from the lab scale to the glass scale to the pilot scale in many of the
categoﬁes. In some of the categories there was a decrease in some of the environmental

factors.
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The large decrease from the lab scale to the glass scale for mass, solvem, and
water usage and most of the environmental parameters was attributed the use of different
equipment and the use of different reagents, catalysts, and solvents. At the laboratory
scale, there was a large use of exotic reagents and techniques that would result in large
scale contamination if conducted at a larger scale.

There was a slight decrease from the glass plant to the pilot plant. This is mainly
attributed to because of a yield increase. This was the case of the mass, solvent and water
usage along with the ingestion toxicity. The yield increase had mixed results in the
environmental categories. For instance, iﬁ order to obtain the higher yield a reactant was
used in excess. This reactanf is an extremely toxic and reactive chemical so the
environmental index increased.

There was also telescoping which occurred between the glass plant and the pilot
plant. Telescoping is defined as the processing of removing process steps or equipment.
By removing this equipment, the processing steps became smaller and not as much
equipment was used. Because the equipment was not used the vessel did not need to be
cleaned with water or solvent and also intermediate was not lost in the vessel.

In terms of energy, it was not expected that there was a huge decrease in the
amount of energy used for the processing. There are a few reasons why there was not a
large drop. The first reason is that the process occurs around ambient temperature and
pressure so there is not much energy involved to begin with. The second reason was
because of different operating conditions of the lab scale compared to the other two
scales. In the laboratory scale, very little cooling was present, but there was a large

amount of heat and mechanical energy. In the glass scale and pilot scale, water with salt
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was heated so that a salt would dissolve quickly into solution and then the solution wz;s
cooled. This was unnecessary since the salt was well below its solubility limit. Use of
room temperature water would have solved the heating and cooling need used for the
process. Also in the glass scale and pilot scale there was negligible mechanical energy
compared to the laboratory scale.

There was a trade off between a solvent substitution that took place between the
glass scale and the pilot scale. In the glass scale a large amount of acetates were used,
but these were substituted in for an alkane in the pilot plant. This caused the ingestion
toxicity to decrease significantly, but caused the aquatic toxicity and smog formation to
_increase. This is because heptane contributes more to smog formation than the butyl
acetate and heptane is extremely toxic to fish.

There was also .':1 decre;ase in the carcinogenicity of the processes. For this
analysis, the intermediate compounds are treated as potential human carcinogens and one
of the intermediates is treated as suspected human carcinogen because this is a traditional
practice in the pharmaceutical industry for unknown compounds. For this case there was
a decrease of the period of time because the yield increased. This analysis where the
intermediates are treated as potential carcinogens is the most accurate way to analyze this
process until further testing can be éonducted on the intermediates or they are proven to

be non- carcinogenic.
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Solvent Selection guide

The solvent selection guide developed with the input of industry representatives is
helpful in determining which solvents will cause less damage from an environmental
perspective. This solvent selection guide is different from previous solvent selection
guide because it takes into account parameters, which wére not previously considered in
other solvents selection tables. This table also provides the user with raw data, so a direct
comparison can be made very quickly to determine if any process improvements were
made in the environmental cétegories. Unlike previous solvent selection tables, this
allows the user to factor in the mass of the chemical and offeré a direct comparison to
alternative solvents. This avoids the pen and paper approach previously used to
determine the optimal solvent ﬁ‘om an environmc;ntal perspective.

Unlike previous solvent .selection tables that have the data imbedded in the
program, this software allows the user to quickly and easily add in data for various other
solvents if another solvent is désired.

In conclusion, a recommendation is to use this solvent selection table along with
the solvent selection approaches already employed by various organizations, such as the

EPA and Glaxo-Smith-Kline to determine the optimal solvent.
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